Calculus 2 : New Concepts

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #52 : L'hospital's Rule

Evaluate:

\(\displaystyle \lim_{x\rightarrow 0}\frac{ \sin(x)}{x^3+x^2+x}\)

Possible Answers:

\(\displaystyle 0\)

The limit does not exist

\(\displaystyle -\infty\)

\(\displaystyle 1\)

\(\displaystyle \infty\)

Correct answer:

\(\displaystyle 1\)

Explanation:

When evaluating the limit using normal methods, we receive the indeterminate form \(\displaystyle \frac{0}{0}\). When this occurs, we must use L'Hopital's Rule to solve the limit. The rule states that

\(\displaystyle \lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\lim_{x\rightarrow a}\frac{f'(x)}{g'(x)}\).

Using the rule, we get

\(\displaystyle \lim_{x\rightarrow 0}\frac{\cos(x)}{3x^2+2x+1}=1\)

Example Question #53 : L'hospital's Rule

Evaluate the limit:

\(\displaystyle \lim_{x\rightarrow 2^+}\frac{\ln\left | x-2\right |}{\ln\left | x^2-4\right |}\)

Possible Answers:

\(\displaystyle -\infty\)

\(\displaystyle 0\)

\(\displaystyle 1\)

The limit does not exist

\(\displaystyle \infty\)

Correct answer:

\(\displaystyle 1\)

Explanation:

When evaluating the limit using normal methods, we get the indeterminate form \(\displaystyle \frac{\infty}{\infty}\). When this occurs, we must use L'Hopital's Rule to evaluate the limit. The rule states that

\(\displaystyle \lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\lim_{x\rightarrow a}\frac{f'(x)}{g'(x)}\).

Using the rule for our limit, we get

\(\displaystyle \lim_{x\rightarrow 2^+}\frac{\frac{1}{x-2}}{\frac{2x}{x^2-4}}=\lim_{x\rightarrow 2^+}(\frac{1}{(x-2)}\cdot \frac{(x+2)(x-2)}{2x})=1\)

We used the following rules to find the derivatives:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \ln(u)=\frac{1}{u}\frac{\mathrm{d} u}{\mathrm{d} x}\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}\)

Example Question #71 : New Concepts

Evaluate \(\displaystyle \lim_{n\rightarrow \infty }\frac{n^3+2n}{2n^2+5}\)

Possible Answers:

\(\displaystyle \infty\)

\(\displaystyle \frac{3}{2}\)

\(\displaystyle 1\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle \infty\)

Explanation:

Evaluating the limit to begin with gets us \(\displaystyle \frac{\infty}{\infty}\), which is undefined. We can solve this problem using L'Hospital's rule. Taking the derivative of the numerator and denominator with respect to n, we get \(\displaystyle \frac{3n^2+2}{4n}\). The limit is still undefined. Another application of the rule gets us \(\displaystyle \frac{6n}{4}\), which evaluated at \(\displaystyle n=\infty\) is in fact \(\displaystyle \infty\).

Example Question #581 : Derivatives

Evaluate \(\displaystyle \lim_{n\rightarrow \infty }\frac{2n^2+3n}{5n^2+n+1}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 1\)

\(\displaystyle -3\)

\(\displaystyle \frac{2}{5}\)

Correct answer:

\(\displaystyle \frac{2}{5}\)

Explanation:

In evaluating the limit to begin with, you get \(\displaystyle \frac{\infty }{\infty}\), which is undefined. Applying L'Hospitals Rule, we take the derivative of both the numerator and denominator with respect to n. The first derivative gets us \(\displaystyle \frac{4n+3}{10n+1}\), which is still improper. Another application of the rule will get us \(\displaystyle \frac{2}{5}\), the correct solution. 

Example Question #71 : New Concepts

Evaluate \(\displaystyle \lim_{x\rightarrow \infty}\frac{2x^2}{7x^3}\)

Possible Answers:

\(\displaystyle \frac{4}{42}\)

\(\displaystyle 0\)

\(\displaystyle \infty\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 0\)

Explanation:

Evaluating the limit to begin with, we get \(\displaystyle \frac{\infty}{\infty}\), which is undefined. Using L'Hospital's rule to solve, we take the derivative of the numerator and denominator of the expression. In doing so, we get \(\displaystyle \frac{4x}{21x^2}\). Evaluating the new limit, we still get \(\displaystyle \frac{\infty}{\infty}\). Another application of L'Hospitals rule gives us \(\displaystyle \frac{4}{42x}\). We can now solve the limit, which is \(\displaystyle \frac{4}{\infty}=0\)

Example Question #71 : New Concepts

Find the limit

\(\displaystyle \lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n\)

Possible Answers:

\(\displaystyle \ln e\)

\(\displaystyle e^2\)

\(\displaystyle 0\)

\(\displaystyle e\)

Correct answer:

\(\displaystyle e\)

Explanation:

Untitled

Example Question #58 : L'hospital's Rule

Use L'Hospital's rule to evaluate

\(\displaystyle \lim_{x \to \infty} \frac{2x^3}{x^4+2x^5}\).

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle \infty\)

The limit does not exist.

\(\displaystyle 2\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 0\)

Explanation:

To use L'hospital's rule, evaluate the limit of the numerator of the fraction and the denominator separately. If the result is \(\displaystyle \infty / \infty\)\(\displaystyle -\infty / \infty\), or \(\displaystyle 0/0\), take the derivative of the numerator and the denominator separately, and try to evaluate the limit again.

 

\(\displaystyle \lim_{x \to \infty} \frac{2x^3}{x^4+2x^5}\)\(\displaystyle \longrightarrow \frac{\infty}{\infty}\)

\(\displaystyle = \lim_{x \to \infty}\frac{6x^2}{4x^3+10x^4}\) (L'hospital's rule) \(\displaystyle \longrightarrow \frac{\infty}{\infty}\)

\(\displaystyle = \lim_{x \to \infty} \frac{12x}{12x^2+40x^3}\) (L'hospital's rule again) \(\displaystyle \longrightarrow \frac{\infty}{\infty}\)

\(\displaystyle = \lim_{x \to \infty}\frac{12}{24x+120x^2}\) (L'hospital's rule again) \(\displaystyle \longrightarrow \frac{12}{\infty}\)

\(\displaystyle = 0\)

 

Example Question #59 : L'hospital's Rule

Use L'Hospital's Rule to evaluate

 

\(\displaystyle \lim_{x \to 0} \frac{\tan(t^2)}{t^2}\)

Possible Answers:

The limit does not exist.

\(\displaystyle \pi/2\)

\(\displaystyle 1\)

\(\displaystyle \pi/3\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To use L'hospital's rule, evaluate the limit of the numerator of the fraction and the denominator separately. If the result is \(\displaystyle \infty / \infty\)\(\displaystyle -\infty / \infty\), or \(\displaystyle 0/0\), take the derivative of the numerator and the denominator separately, and try to evaluate the limit again.

\(\displaystyle \lim_{x \to 0} \frac{\tan(x^2)}{x^2}\)  \(\displaystyle \longrightarrow \frac{0}{0}\)

 

\(\displaystyle =\lim_{x \to 0} \frac{2x\sec^{2}(x^2)}{2x}\) (L'hospital's Rule) \(\displaystyle \longrightarrow \frac{0}{0}\)

\(\displaystyle =\lim_{x \to 0} \frac{(2x)(2\sec(x^2)(\sec(x^2)\tan(x^2))+\sec^2(x^2)(2)}{2}\) (L'hospital's Rule. Here the derivative of the numerator involves the Product Rule)

 

\(\displaystyle = \frac{(0)(0)+(1)(2)}{2}=1\)

Example Question #60 : L'hospital's Rule

Use L'hospital's Rule to evaluate

\(\displaystyle \lim_{x \to 0} \frac{2^{-x}-1}{3^{-x}-1}\).

Possible Answers:

\(\displaystyle 1/2\)

\(\displaystyle \infty\)

\(\displaystyle 1\)

\(\displaystyle 0\)

None of the other answers

Correct answer:

None of the other answers

Explanation:

To use L'hospital's rule, evaluate the limit of the numerator of the fraction and the denominator separately. If the result is \(\displaystyle \infty / \infty\)\(\displaystyle -\infty / \infty\), or \(\displaystyle 0/0\), take the derivative of the numerator and the denominator separately, and try to evaluate the limit again.

 

\(\displaystyle \lim_{x \to 0} \frac{2^{-x}-1}{3^{-x}-1}\) \(\displaystyle \longrightarrow \frac{2^0-1}{3^0-1}\longrightarrow \frac{0}{0}\)

\(\displaystyle =\lim_{x \to 0} \frac{-\ln(2)(2^{-x})-0}{-\ln(3)(3^{-x})-0}\) (L'hospital's Rule)

\(\displaystyle =\frac{\ln(2)}{\ln(3)}\).

So the answer is \(\displaystyle \frac{\ln(2)}{\ln(3)}\).

Example Question #591 : Derivatives

\(\displaystyle \lim_{x\rightarrow a} \frac{x^3-a^3}{x-a}\)

Possible Answers:

\(\displaystyle \infty\)

\(\displaystyle 0\)

\(\displaystyle 2a^2\)

\(\displaystyle 3a^2\)

\(\displaystyle a^2\)

Correct answer:

\(\displaystyle 3a^2\)

Explanation:

The first step to computing a limit is direct substitution:

\(\displaystyle \lim_{x\rightarrow a} \frac{x^3-a^3}{x-a}=\frac{a^3-a^3}{a-a}=\frac{0}{0}.\)

Now, we see that this is in the form of L'Hopital's Rule.  For those problems, we take a derivative of both the numerator and denominator separately.  Remember, \(\displaystyle a\) is simply a constant!

\(\displaystyle \frac{(x^3-a^3)'}{(x-a)'}=\frac{3x^2}{1}.\)

Now, we can go back and plug in the original limit value:

\(\displaystyle \lim_{x\rightarrow a}\frac{3x^2}{1}=3a^2.\)

Learning Tools by Varsity Tutors