Calculus 2 : New Concepts

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #52 : L'hospital's Rule

Evaluate:

\displaystyle \lim_{x\rightarrow 0}\frac{ \sin(x)}{x^3+x^2+x}

Possible Answers:

\displaystyle 0

The limit does not exist

\displaystyle -\infty

\displaystyle 1

\displaystyle \infty

Correct answer:

\displaystyle 1

Explanation:

When evaluating the limit using normal methods, we receive the indeterminate form \displaystyle \frac{0}{0}. When this occurs, we must use L'Hopital's Rule to solve the limit. The rule states that

\displaystyle \lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\lim_{x\rightarrow a}\frac{f'(x)}{g'(x)}.

Using the rule, we get

\displaystyle \lim_{x\rightarrow 0}\frac{\cos(x)}{3x^2+2x+1}=1

Example Question #53 : L'hospital's Rule

Evaluate the limit:

\displaystyle \lim_{x\rightarrow 2^+}\frac{\ln\left | x-2\right |}{\ln\left | x^2-4\right |}

Possible Answers:

\displaystyle -\infty

\displaystyle 0

\displaystyle 1

The limit does not exist

\displaystyle \infty

Correct answer:

\displaystyle 1

Explanation:

When evaluating the limit using normal methods, we get the indeterminate form \displaystyle \frac{\infty}{\infty}. When this occurs, we must use L'Hopital's Rule to evaluate the limit. The rule states that

\displaystyle \lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\lim_{x\rightarrow a}\frac{f'(x)}{g'(x)}.

Using the rule for our limit, we get

\displaystyle \lim_{x\rightarrow 2^+}\frac{\frac{1}{x-2}}{\frac{2x}{x^2-4}}=\lim_{x\rightarrow 2^+}(\frac{1}{(x-2)}\cdot \frac{(x+2)(x-2)}{2x})=1

We used the following rules to find the derivatives:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \ln(u)=\frac{1}{u}\frac{\mathrm{d} u}{\mathrm{d} x}\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}

Example Question #71 : New Concepts

Evaluate \displaystyle \lim_{n\rightarrow \infty }\frac{n^3+2n}{2n^2+5}

Possible Answers:

\displaystyle \infty

\displaystyle \frac{3}{2}

\displaystyle 1

\displaystyle 0

Correct answer:

\displaystyle \infty

Explanation:

Evaluating the limit to begin with gets us \displaystyle \frac{\infty}{\infty}, which is undefined. We can solve this problem using L'Hospital's rule. Taking the derivative of the numerator and denominator with respect to n, we get \displaystyle \frac{3n^2+2}{4n}. The limit is still undefined. Another application of the rule gets us \displaystyle \frac{6n}{4}, which evaluated at \displaystyle n=\infty is in fact \displaystyle \infty.

Example Question #581 : Derivatives

Evaluate \displaystyle \lim_{n\rightarrow \infty }\frac{2n^2+3n}{5n^2+n+1}

Possible Answers:

\displaystyle 0

\displaystyle 1

\displaystyle -3

\displaystyle \frac{2}{5}

Correct answer:

\displaystyle \frac{2}{5}

Explanation:

In evaluating the limit to begin with, you get \displaystyle \frac{\infty }{\infty}, which is undefined. Applying L'Hospitals Rule, we take the derivative of both the numerator and denominator with respect to n. The first derivative gets us \displaystyle \frac{4n+3}{10n+1}, which is still improper. Another application of the rule will get us \displaystyle \frac{2}{5}, the correct solution. 

Example Question #71 : New Concepts

Evaluate \displaystyle \lim_{x\rightarrow \infty}\frac{2x^2}{7x^3}

Possible Answers:

\displaystyle \frac{4}{42}

\displaystyle 0

\displaystyle \infty

\displaystyle 1

Correct answer:

\displaystyle 0

Explanation:

Evaluating the limit to begin with, we get \displaystyle \frac{\infty}{\infty}, which is undefined. Using L'Hospital's rule to solve, we take the derivative of the numerator and denominator of the expression. In doing so, we get \displaystyle \frac{4x}{21x^2}. Evaluating the new limit, we still get \displaystyle \frac{\infty}{\infty}. Another application of L'Hospitals rule gives us \displaystyle \frac{4}{42x}. We can now solve the limit, which is \displaystyle \frac{4}{\infty}=0

Example Question #591 : Derivatives

Find the limit

\displaystyle \lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n

Possible Answers:

\displaystyle \ln e

\displaystyle 0

\displaystyle e^2

\displaystyle e

Correct answer:

\displaystyle e

Explanation:

Untitled

Example Question #58 : L'hospital's Rule

Use L'Hospital's rule to evaluate

\displaystyle \lim_{x \to \infty} \frac{2x^3}{x^4+2x^5}.

Possible Answers:

\displaystyle 1

\displaystyle \infty

The limit does not exist.

\displaystyle 2

\displaystyle 0

Correct answer:

\displaystyle 0

Explanation:

To use L'hospital's rule, evaluate the limit of the numerator of the fraction and the denominator separately. If the result is \displaystyle \infty / \infty\displaystyle -\infty / \infty, or \displaystyle 0/0, take the derivative of the numerator and the denominator separately, and try to evaluate the limit again.

 

\displaystyle \lim_{x \to \infty} \frac{2x^3}{x^4+2x^5}\displaystyle \longrightarrow \frac{\infty}{\infty}

\displaystyle = \lim_{x \to \infty}\frac{6x^2}{4x^3+10x^4} (L'hospital's rule) \displaystyle \longrightarrow \frac{\infty}{\infty}

\displaystyle = \lim_{x \to \infty} \frac{12x}{12x^2+40x^3} (L'hospital's rule again) \displaystyle \longrightarrow \frac{\infty}{\infty}

\displaystyle = \lim_{x \to \infty}\frac{12}{24x+120x^2} (L'hospital's rule again) \displaystyle \longrightarrow \frac{12}{\infty}

\displaystyle = 0

 

Example Question #59 : L'hospital's Rule

Use L'Hospital's Rule to evaluate

 

\displaystyle \lim_{x \to 0} \frac{\tan(t^2)}{t^2}

Possible Answers:

The limit does not exist.

\displaystyle \pi/2

\displaystyle 1

\displaystyle \pi/3

\displaystyle 0

Correct answer:

\displaystyle 1

Explanation:

To use L'hospital's rule, evaluate the limit of the numerator of the fraction and the denominator separately. If the result is \displaystyle \infty / \infty\displaystyle -\infty / \infty, or \displaystyle 0/0, take the derivative of the numerator and the denominator separately, and try to evaluate the limit again.

\displaystyle \lim_{x \to 0} \frac{\tan(x^2)}{x^2}  \displaystyle \longrightarrow \frac{0}{0}

 

\displaystyle =\lim_{x \to 0} \frac{2x\sec^{2}(x^2)}{2x} (L'hospital's Rule) \displaystyle \longrightarrow \frac{0}{0}

\displaystyle =\lim_{x \to 0} \frac{(2x)(2\sec(x^2)(\sec(x^2)\tan(x^2))+\sec^2(x^2)(2)}{2} (L'hospital's Rule. Here the derivative of the numerator involves the Product Rule)

 

\displaystyle = \frac{(0)(0)+(1)(2)}{2}=1

Example Question #60 : L'hospital's Rule

Use L'hospital's Rule to evaluate

\displaystyle \lim_{x \to 0} \frac{2^{-x}-1}{3^{-x}-1}.

Possible Answers:

\displaystyle 1/2

\displaystyle \infty

\displaystyle 1

\displaystyle 0

None of the other answers

Correct answer:

None of the other answers

Explanation:

To use L'hospital's rule, evaluate the limit of the numerator of the fraction and the denominator separately. If the result is \displaystyle \infty / \infty\displaystyle -\infty / \infty, or \displaystyle 0/0, take the derivative of the numerator and the denominator separately, and try to evaluate the limit again.

 

\displaystyle \lim_{x \to 0} \frac{2^{-x}-1}{3^{-x}-1} \displaystyle \longrightarrow \frac{2^0-1}{3^0-1}\longrightarrow \frac{0}{0}

\displaystyle =\lim_{x \to 0} \frac{-\ln(2)(2^{-x})-0}{-\ln(3)(3^{-x})-0} (L'hospital's Rule)

\displaystyle =\frac{\ln(2)}{\ln(3)}.

So the answer is \displaystyle \frac{\ln(2)}{\ln(3)}.

Example Question #591 : Derivatives

\displaystyle \lim_{x\rightarrow a} \frac{x^3-a^3}{x-a}

Possible Answers:

\displaystyle \infty

\displaystyle 0

\displaystyle 2a^2

\displaystyle 3a^2

\displaystyle a^2

Correct answer:

\displaystyle 3a^2

Explanation:

The first step to computing a limit is direct substitution:

\displaystyle \lim_{x\rightarrow a} \frac{x^3-a^3}{x-a}=\frac{a^3-a^3}{a-a}=\frac{0}{0}.

Now, we see that this is in the form of L'Hopital's Rule.  For those problems, we take a derivative of both the numerator and denominator separately.  Remember, \displaystyle a is simply a constant!

\displaystyle \frac{(x^3-a^3)'}{(x-a)'}=\frac{3x^2}{1}.

Now, we can go back and plug in the original limit value:

\displaystyle \lim_{x\rightarrow a}\frac{3x^2}{1}=3a^2.

Learning Tools by Varsity Tutors