Calculus 2 : Calculus II

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #95 : Polar

Calculate the polar form hypotenuse of the following cartesian equation:

Possible Answers:

Correct answer:

Explanation:

In a cartesian form, the primary parameters are  and . In polar form, they are  and 

 is the hypotenuse, and  is the angle created by .

2 things to know when converting from Cartesian to polar.

You want to calculate the hypotenuse, 

Solution:

 

Example Question #96 : Polar

Calculate the polar form hypotenuse of the following cartesian equation:

Possible Answers:

Correct answer:

Explanation:

In a cartesian form, the primary parameters are  and . In polar form, they are  and 

 is the hypotenuse, and  is the angle created by .

2 things to know when converting from Cartesian to polar.

You want to calculate the hypotenuse, 

Solution:

 

Example Question #97 : Polar

What is the polar form of 

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

Dividing both sides by , we get:

Example Question #91 : Polar Form

What is the polar form of ?

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

Dividing both sides by , we get:

Example Question #92 : Polar Form

What is the polar form of ?

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

 

Example Question #93 : Polar Form

What is the polar form of ?

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

 

Example Question #1 : Graphing Polar Form

Which of the following substitutions will help solve the following integral?

 

 

 

 

Possible Answers:

Correct answer:

Explanation:

As we can see in this integral, there is no reverse chain-rule u-substitution possible. The logical step is to use a trigonometric substitution. If one recalls that trig substitutions of the type  could be solved with the substitution , then the answer is easily seen. However, we can also use a right triangle:                                                       Screen_shot_2015-04-18_at_6.33.31_pm

And thus we have: 

or:

 

Example Question #1 : Graphing Polar Form

Graph the equation  where .

Possible Answers:

Faker_cosx

R_cosx

R_cosx_1

R_sinx

R_cos2x

Correct answer:

R_cosx

Explanation:

At angle  the graph as a radius of . As it approaches , the radius approaches .

As the graph approaches , the radius approaches .

Because this is a negative radius, the curve is drawn in the opposite quadrant between  and .

Between  and , the radius approaches  from  and redraws the curve in the first quadrant.

Between  and , the graph redraws the curve in the fourth quadrant as the radius approaches  from .    

Example Question #5 : Parametric Form

Draw the graph of  from .

Possible Answers:

R_cosx

R_sinx_1

Faker_cosx

R_sin2x

R_sinx

Correct answer:

R_sinx

Explanation:

Between  and , the radius approaches  from .

From  to  the radius goes from  to .

Between  and , the curve is redrawn in the opposite quadrant, the first quadrant as the radius approaches .

From  and , the curve is redrawn in the second quadrant as the radius approaches  from .   

Example Question #11 : Polar Form

Draw the graph of  from .

Possible Answers:

R_cosx_1

R_sin2x

R2_cos2x

R_sin2x

R_cos2x

Correct answer:

R_cos2x

Explanation:

Because this function has a period of , the x-intercepts of the graph   happen at a reference angle of  (angles halfway between the angles of the axes).  

Between  and  the radius approaches  from .

Between  and , the radius approaches  from  and is drawn in the opposite quadrant, the third quadrant because it has a negative radius.

From  to  the radius approaches  from  , and is drawn in the fourth quadrant, the opposite quadrant. 

Between  and , the radius approaches  from .

From  and , the radius approaches  from .

Between  and , the radius approaches  from . Because it is a negative radius, it is drawn in the opposite quadrant, the first quadrant.

Then between  and  the radius approaches  from  and is draw in the second quadrant.

Finally between  and , the radius approaches  from .                  

Learning Tools by Varsity Tutors