Calculus 2 : Calculus II

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #182 : Vector

Find the dot product of \(\displaystyle a=\left \langle 3,-3,-3\right \rangle\) and \(\displaystyle b=\left \langle -3,3,-3\right \rangle\)

Possible Answers:

\(\displaystyle -6\)

\(\displaystyle -9\)

\(\displaystyle 6\)

\(\displaystyle 9\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle -9\)

Explanation:

The dot product of two vectors is the sum of the products of the vectors' corresponding elements. Given \(\displaystyle a=\left \langle 3,-3,-3\right \rangle\) and \(\displaystyle b=\left \langle -3,3,-3\right \rangle\):

\(\displaystyle \left \langle 3,-3,-3\right \rangle\times \left \langle -3,3,-3\right \rangle\)

\(\displaystyle =(3\times -3)+(-3\times 3)+(-3\times -3)\)

\(\displaystyle =(-9)+(-9)+(9)\)

\(\displaystyle =-18+9\)

\(\displaystyle =-9\)  

Example Question #21 : Vector Calculations

Find the dot product of \(\displaystyle a=\left \langle -1,-1,1\right \rangle\) and \(\displaystyle b=\left \langle 1,-1,-1\right \rangle\).

Possible Answers:

\(\displaystyle -1\)

\(\displaystyle -3\)

\(\displaystyle 2\)

\(\displaystyle 0\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle -1\)

Explanation:

The dot product of two vectors is the sum of the products of the vectors' composite elements. Thus, given \(\displaystyle a=\left \langle -1,-1,1\right \rangle\) and \(\displaystyle b=\left \langle 1,-1,-1\right \rangle\).

\(\displaystyle \left \langle -1,-1,1\right \rangle\times\left \langle 1,-1,-1\right \rangle\)

\(\displaystyle =(-1\times 1)+(-1\times -1)+(1\times -1)\)

\(\displaystyle =(-1)+(1)+(-1)\)

\(\displaystyle =0+(-1)\)

\(\displaystyle =-1\)

Example Question #1041 : Calculus Ii

Find the dot product of \(\displaystyle a=\left \langle 2,9,7\right \rangle\) and \(\displaystyle b=\left \langle 1,3,6 \right \rangle\).

Possible Answers:

\(\displaystyle 17\)

\(\displaystyle -71\)

\(\displaystyle 71\)

\(\displaystyle -17\)

None of the above

Correct answer:

\(\displaystyle 71\)

Explanation:

The dot product of two vectors is the sum of the products of the vectors' composite elements. Thus, given \(\displaystyle a=\left \langle 2,9,7\right \rangle\) and \(\displaystyle b=\left \langle 1,3,6 \right \rangle\).

\(\displaystyle \left \langle 2,9,7\right \rangle\times \left \langle1,3,6 \right \rangle\)

\(\displaystyle =(2\times 1)+(9\times 3)+(7\times 6)\)

\(\displaystyle =2+27+42\)

\(\displaystyle =2+69\)

\(\displaystyle =71\)

Example Question #21 : Vector Calculations

Evaluate the dot product:  \(\displaystyle \left \langle a^2,2a^2\right \rangle \cdot \left \langle 2a^2,a^2\right \rangle\)

Possible Answers:

\(\displaystyle \left \langle 3a^2,3a^2\right \rangle\)

\(\displaystyle 2a^4\)

\(\displaystyle 3a^4\)

\(\displaystyle 4a^4\)

\(\displaystyle \left \langle 4a^2,4a^2\right \rangle\)

Correct answer:

\(\displaystyle 4a^4\)

Explanation:

To evaluate the dot product, apply the following formula:

\(\displaystyle \left \langle x_1,y_1 \right \rangle \cdot \left \langle x_2,y_2 \right \rangle= x_1x_2+ y_1y_2\)

\(\displaystyle \left \langle a^2,2a^2\right \rangle \cdot \left \langle 2a^2,a^2\right \rangle= (a^2)(2a^2)+(2a^2)(a^2)= 2a^4+2a^4\)

\(\displaystyle \left \langle a^2,2a^2\right \rangle \cdot \left \langle 2a^2,a^2\right \rangle=4a^4\)

Example Question #181 : Vector

Evaluate:  \(\displaystyle \left \langle 1,2,3\right \rangle \times \left \langle 4,5,6\right \rangle\)

Possible Answers:

\(\displaystyle \left \langle 4,10,18\right \rangle\)

\(\displaystyle \left \langle -3,18,-3\right \rangle\)

\(\displaystyle \left \langle -3,6,-3\right \rangle\)

\(\displaystyle \left \langle 5,-7,3\right \rangle\)

\(\displaystyle 32\)

Correct answer:

\(\displaystyle \left \langle -3,6,-3\right \rangle\)

Explanation:

Do not mistaken the times symbol for multiplication.  This is a notation for computing the cross product of two vectors.

Write the formula to compute the cross product of two vectors.

For \(\displaystyle \vec{x}= \left \langle x_1,x_2,x_3\right \rangle\) and \(\displaystyle \vec{y}= \left \langle y_1,y_2,y_3\right \rangle\):

\(\displaystyle \vec{x}\times \vec{y}=\left \langle x_2y_3-x_3y_2, x_3y_1-x_1y_3,x_1y_2-x_2y_1 \right \rangle\)

Substitute the values and solve for the cross product.

\(\displaystyle \vec{x}\times \vec{y}=\left \langle (2)(6)-(3)(5), (3)(4)-(1)(6), (1)(5)-(2)(4) \right \rangle\)

\(\displaystyle \vec{x}\times \vec{y}=\left \langle -3,6,-3\right \rangle\)

Example Question #1042 : Calculus Ii

Find the dot product of \(\displaystyle a=\left \langle 3,7,-10\right \rangle\) and \(\displaystyle b=\left \langle 4,6,10 \right \rangle\).

Possible Answers:

\(\displaystyle 96\)

\(\displaystyle -96\)

None of the above

\(\displaystyle -46\)

\(\displaystyle 48\)

Correct answer:

\(\displaystyle -46\)

Explanation:

The dot product of two vectors is the sum of the products of the vectors' composite elements. Thus, given \(\displaystyle a=\left \langle 3,7,-10\right \rangle\) and \(\displaystyle b=\left \langle 4,6,10 \right \rangle\).

\(\displaystyle \left \langle 3,7,-10\right \rangle\times \left \langle 4,6,10 \right \rangle\) 

\(\displaystyle =(3\times 4)+(7\times 6)+(-10\times 10)\)

\(\displaystyle =12+42+(-100)\)

\(\displaystyle =54+(-100)\)

\(\displaystyle =-46\)

Example Question #531 : Parametric, Polar, And Vector

What is the norm of \(\displaystyle a=\left \langle -2,-1,1\right \rangle\) ?

Possible Answers:

\(\displaystyle 2\sqrt{2}\)

\(\displaystyle \sqrt{-1}\)

\(\displaystyle \sqrt{2}\)

\(\displaystyle 1\)

\(\displaystyle \sqrt{6}\)

Correct answer:

\(\displaystyle \sqrt{6}\)

Explanation:

In order to find the norm of a vector, we must take the square root of the sums of the squares of the vector's elements. Given \(\displaystyle a=\left \langle -2,-1,1\right \rangle\), then:

\(\displaystyle \left \| a\right \|=\sqrt{(-2)^{2}+(-1)^{2}+(1)^{2}}\)

\(\displaystyle \left \| a\right \|=\sqrt{4+1+1}\)

\(\displaystyle \left \| a\right \|=\sqrt{6}\)

Example Question #532 : Parametric, Polar, And Vector

What is the norm of \(\displaystyle a=\left \langle 4,0,5\right \rangle\)?

Possible Answers:

\(\displaystyle \sqrt{14}\)

\(\displaystyle \sqrt{5}\)

None of the above

\(\displaystyle \sqrt{41}\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle \sqrt{41}\)

Explanation:

In order to find the norm of a vector, we must take the square root of the sums of the squares of the vector's elements. Given \(\displaystyle a=\left \langle 4,0,5\right \rangle\), then:

\(\displaystyle \left \| a\right \|=\sqrt{(4)^{2}+(0)^{2}+(5)^{2}}\)

\(\displaystyle \left \| a\right \|=\sqrt{16+0+25}\)

\(\displaystyle \left \| a\right \|=\sqrt{41}\)

Example Question #181 : Vector

What is the norm of \(\displaystyle a=\left \langle 1,0,-1\right \rangle\)?

Possible Answers:

\(\displaystyle \sqrt{2}\)

\(\displaystyle \sqrt{1}\)

\(\displaystyle \sqrt{-1}\)

\(\displaystyle 0\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle \sqrt{2}\)

Explanation:

In order to find the norm of a vector, we must take the square root of the sums of the squares of the vector's elements. Given \(\displaystyle a=\left \langle 1,0,-1\right \rangle\), then:

\(\displaystyle \left \| a\right \|=\sqrt{(1)^{2}+(0)^{2}+(-1)^{2}}\)

\(\displaystyle \left \| a\right \|=\sqrt{1+0+1}\)

\(\displaystyle \left \| a\right \|=\sqrt{2}\)

Example Question #1041 : Calculus Ii

What is the norm of \(\displaystyle a=\left \langle 5,-6,7\right \rangle\)?

Possible Answers:

\(\displaystyle \sqrt{111}\)

\(\displaystyle \sqrt{101}\)

\(\displaystyle \sqrt{107}\)

\(\displaystyle \sqrt{105}\)

\(\displaystyle \sqrt{110}\)

Correct answer:

\(\displaystyle \sqrt{110}\)

Explanation:

In order to find the norm of a vector, we must first find the sum of the squares of the vector's elements and take the square root of that sum. Given \(\displaystyle a=\left \langle 5,-6,7\right \rangle\), then:

\(\displaystyle \left \| a\right \|=\sqrt{(5)^{2}+(-6)^{2}+(7)^{2}}\)

\(\displaystyle \left \| a\right \|=\sqrt{25+36+49}\)

\(\displaystyle \left \| a\right \|=\sqrt{61+49}\)

\(\displaystyle \left \| a\right \|=\sqrt{110}\)

Learning Tools by Varsity Tutors