Calculus 2 : Calculus II

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Vector Calculations

Evaluate:  \(\displaystyle \left \langle3,-1,2 \right \rangle \cdot \left \langle -2,4,5\right \rangle\)

Possible Answers:

\(\displaystyle \left \langle -6,-4,10\right \rangle\)

\(\displaystyle \left \langle 1,3,7\right \rangle\)

\(\displaystyle -10\)

\(\displaystyle 10\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 0\)

Explanation:

Let vector \(\displaystyle \vec{a}=\left \langle a1,a2,a3\right \rangle\)  and \(\displaystyle \vec{b}=\left \langle b1,b2,b3\right \rangle\).

Use the following formula to solve this dot product:

 \(\displaystyle \vec{a}\cdot\vec{b} = a1\cdot b1+ a2\cdot b2+a3\cdot b3\)

Substitute and solve.

\(\displaystyle \left \langle3,-1,2 \right \rangle \cdot \left \langle -2,4,5\right \rangle=(3)(-2)+(-1)(4)+(2)(5 )=0\)

Example Question #1 : Vector Calculations

Calculate the cross product:  \(\displaystyle (i-j)\times-k\)

Possible Answers:

\(\displaystyle i+j\)

\(\displaystyle i-j\)

\(\displaystyle -j+k\)

\(\displaystyle i-j-k\)

\(\displaystyle i-k\)

Correct answer:

\(\displaystyle i+j\)

Explanation:

The vectors can be rewritten in the following form:

\(\displaystyle \begin{vmatrix} i& j& k\\ 1&-1 &0 \\ 0& 0& -1 \end{vmatrix}\)

One method of solving the 3 by 3 determinant is to break this down into 2 by 2 determinants. The determinant of 2 by 2 matrices are computed by \(\displaystyle ad-bc\), such that:

\(\displaystyle D=\begin{vmatrix} a&b \\ c& d \end{vmatrix}\)

Rewrite the 3 by 3 determinant.

\(\displaystyle =i\begin{vmatrix} -1& 0\\ 0&-1 \end{vmatrix}- j\begin{vmatrix} 1&0 \\ 0&-1 \end{vmatrix}+k\begin{bmatrix} 1&-1 \\ 0&0 \end{bmatrix}\)

\(\displaystyle =i[(-1)(-1)-0] -j[(1)(-1)-0]+k[0]\)

\(\displaystyle = i[1]-j[-1]\)

\(\displaystyle = i+j\)

Example Question #1 : Vector Calculations

A sling shoots a rock \(\displaystyle 10\) feet per second at an elevation angle of \(\displaystyle 10\) degrees. What are the horizontal and vertical components in vector form?

Possible Answers:

\(\displaystyle \left \langle -9.848,1.736\right \rangle\)

\(\displaystyle \left \langle -8.391,-5.440\right \rangle\)

\(\displaystyle \left \langle 9.848,1.736\right \rangle\)

\(\displaystyle \left \langle 8.391,5.440\right \rangle\)

\(\displaystyle \left \langle -9.848,-1.736\right \rangle\)

Correct answer:

\(\displaystyle \left \langle 9.848,1.736\right \rangle\)

Explanation:

The horizontal and vertical components are shown below:

 \(\displaystyle Vx=Vcos\Theta\)

\(\displaystyle Vy=Vsin\Theta\)

Plug in the velocity and the given angle to the equations.

\(\displaystyle Vx=Vcos\Theta=10cos(10) = 9.848\)

\(\displaystyle Vy=Vsin\Theta = 10sin(10)=1.736\)

Therefore, the components in vector form is \(\displaystyle \left \langle 9.848,1.736\right \rangle\).

Example Question #2 : Vector Calculations

Evaluate the dot product of \(\displaystyle \left \langle 1,6\right \rangle\) and \(\displaystyle \left \langle 1,6\right \rangle\).

Possible Answers:

\(\displaystyle \infty\)

\(\displaystyle 0\)

\(\displaystyle 37\)

\(\displaystyle 14\)

\(\displaystyle 12\)

Correct answer:

\(\displaystyle 37\)

Explanation:

Let vectors \(\displaystyle \vec{a}=\left \langle a1,a2\right \rangle\)  and \(\displaystyle \vec{b}=\left \langle b1,b2\right \rangle\).

The formula for the dot product is:

\(\displaystyle \vec{a}\cdot\vec{b} = a1\cdot b1+ a2\cdot b2\)

Follow this formula and simplify.

\(\displaystyle \left \langle 1,6\right \rangle\cdot\left \langle 1,6\right \rangle = (1)(1)+(6)(6)=37\)

Example Question #7 : Vector Calculations

Solve: \(\displaystyle \left \langle 3,4,5\right \rangle\cdot\left \langle1,2,3 \right \rangle\)

Possible Answers:

\(\displaystyle \left \langle 3,8,15\right \rangle\)

\(\displaystyle 17\)

\(\displaystyle \left \langle 2,-4,2\right \rangle\)

\(\displaystyle \left \langle 4,6,8\right \rangle\)

\(\displaystyle 26\)

Correct answer:

\(\displaystyle 26\)

Explanation:

The problem \(\displaystyle \left \langle 3,4,5\right \rangle\cdot\left \langle1,2,3 \right \rangle\) is in the form of a dot product.  The final answer must be an integer, and not in vector form.

Write the formula for the dot product.

\(\displaystyle \left \langle a_1,a_2,a_3\right \rangle\cdot\left \langle b_1,b_2,b_3\right \rangle=a_1b_1+a_2b_2+a_3b_3\)

Substitute the givens and solve.

\(\displaystyle (3)(1)+(4)(2)+(5)(3)=3+8+15=26\)

Example Question #8 : Vector Calculations

Suppose \(\displaystyle \vec{a}= \left \langle 2,4,-3\right \rangle\).  Find the magnitude of \(\displaystyle 2\vec{a}\).

Possible Answers:

\(\displaystyle 2\sqrt{29}\)

\(\displaystyle 4\)

\(\displaystyle \sqrt{29}\)

\(\displaystyle \sqrt{69}\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 2\sqrt{29}\)

Explanation:

Calculate \(\displaystyle 2\vec{a}\).

\(\displaystyle \vec{a}= \left \langle 2,4,-3\right \rangle\)

\(\displaystyle 2\vec{a}= \left \langle 4,8,-6\right \rangle\)

Find the magnitude.

\(\displaystyle |2\vec{a}|=\sqrt{4^2+8^2+(-6)^2}=\sqrt{16+64+36}=\sqrt{116}=2\sqrt{29}\)

Example Question #9 : Vector Calculations

Two particles move freely in two dimensional space. The first particle's location as a function of time is \(\displaystyle \small \left< 3t^{2}-t,4\right>\), and the second particle's location is \(\displaystyle \small \small \left< 6,t+1/t\right>\). Will the particles ever collide for \(\displaystyle \small t>0\)

Possible Answers:

No, because the particles' \(\displaystyle \small x\) and \(\displaystyle \small y\) coordinates are never the same simultaneously at any instant in time.

Impossible to determine

Yes, because the particles' \(\displaystyle \small x\) and \(\displaystyle \small y\) coordinates are the same simultaneously at a certain instant in time.

Yes, because the particles have the same \(\displaystyle \small x\) or \(\displaystyle \small y\) component (not necessarily simultaneously).

No, because the particles never have the same \(\displaystyle \small x\) or \(\displaystyle \small y\) component (not necessarily simultaneously).

Correct answer:

No, because the particles' \(\displaystyle \small x\) and \(\displaystyle \small y\) coordinates are never the same simultaneously at any instant in time.

Explanation:

In order for the particles to collide, their \(\displaystyle \small x\) and \(\displaystyle \small y\) coordinates must be equal simultaneously. In order to check if this happens, we can set the particles' \(\displaystyle \small x\)-coordinates and \(\displaystyle \small y\)-coordinates equal to each other.

Let's start with the \(\displaystyle \small x\)-coordinate: 

\(\displaystyle \small \small \small 3t^{2}-t=6\rightarrow 3t^2-t-6=0\).

Using the quadratic formula

\(\displaystyle \small \small t=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\), we get \(\displaystyle \small \small t=\frac{1+\sqrt{73}}{6}\approx1.59\) 

the other root is negative, so it can be discarded since \(\displaystyle \small t>0\).

Now let's do the \(\displaystyle \small y\)-coordinate: \(\displaystyle \small \small t+1/t=4\rightarrow t^2+1=4t\rightarrow t^2-4t+1=0\). Use the quadratic formula again to solve for \(\displaystyle \small t\), and you'll get \(\displaystyle \small 2\pm\sqrt{3}\) (these roots are approximately \(\displaystyle \small 0.27\) and \(\displaystyle \small 3.73\)). The particles never have the same \(\displaystyle \small x\) and \(\displaystyle \small y\) coordinate simultaneously, so they do not collide.

Example Question #10 : Vector Calculations

\(\displaystyle \vec{a}=< 3,2,1>\)

\(\displaystyle \vec{b}=< 1,0,10>\)

Calculate \(\displaystyle \vec{a}\cdot\vec{b}\)

Possible Answers:

\(\displaystyle 39\)

\(\displaystyle 7\)

\(\displaystyle 17\)

\(\displaystyle 13\)

\(\displaystyle 15\)

Correct answer:

\(\displaystyle 13\)

Explanation:

\(\displaystyle \vec{a}=< 3,2,1>\)

\(\displaystyle \vec{b}=< 1,0,10>\)

\(\displaystyle \vec{a}\cdot\vec{b}\) is simply the dot product of these two vectors. Mathematically, this is calculated as follows.

\(\displaystyle (3\cdot 1)+(2\cdot 0)+(1\cdot 10)\)  \(\displaystyle =13\)

 

Example Question #161 : Vector

Find the dot product of \(\displaystyle a=\left \langle 3,4,7\right \rangle\) and  \(\displaystyle b=\left \langle -1,5,6\right \rangle\).

Possible Answers:

\(\displaystyle 59\)

\(\displaystyle 61\)

\(\displaystyle 57\)

\(\displaystyle 58\)

\(\displaystyle 60\)

Correct answer:

\(\displaystyle 59\)

Explanation:

To find the dot product of \(\displaystyle a=\left \langle 3,4,7\right \rangle\) and \(\displaystyle b=\left \langle -1,5,6\right \rangle\), calculate the sum of the products of the vectors' corresponding components:

\(\displaystyle \left \langle 3,4,7\right \rangle\times \left \langle -1,5,6\right \rangle\)

\(\displaystyle =(3\times -1)+ (4\times 5)+(7\times 6)\)

\(\displaystyle =-3+ 20+42\)

\(\displaystyle =-3+ 62\)

\(\displaystyle =59\)

Example Question #11 : Vector Calculations

Find the dot product of \(\displaystyle a=\left \langle 5,-5,2\right \rangle\) and  \(\displaystyle b=\left \langle 2,3,8\right \rangle\).

Possible Answers:

\(\displaystyle 9\)

\(\displaystyle 12\)

\(\displaystyle 10\)

\(\displaystyle 11\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle 11\)

Explanation:

To find the dot product of \(\displaystyle a=\left \langle 5,-5,2\right \rangle\) and \(\displaystyle b=\left \langle 2,3,8\right \rangle\), calculate the sum of the products of the vectors' corresponding components:

\(\displaystyle \left \langle 5,-5,2\right \rangle\times \left \langle 2,3,8\right \rangle\)

\(\displaystyle =(5\times 2)+ (-5\times 3)+(2\times 8)\)

\(\displaystyle =10+ (-15)+16\)

\(\displaystyle =10+ 1\)

\(\displaystyle =11\)

Learning Tools by Varsity Tutors