Calculus 1 : How to find velocity

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #91 : How To Find Velocity

What is the average velocity of an object from \displaystyle t=2 to \displaystyle t=7 if the position of the function is described by \displaystyle y=2t+1?

Possible Answers:

\displaystyle 11

\displaystyle 2

\displaystyle 0

\displaystyle 4

\displaystyle 10

Correct answer:

\displaystyle 2

Explanation:

Write the average velocity equation given the initial and final velocities.

\displaystyle v_f=\frac{y(t_f)-y(t_i)}{t_f-t_i}

Solve for \displaystyle y(t_f).

\displaystyle y(t_f=7)= 2(7)+1=15

Solve for \displaystyle y(t_i).

\displaystyle y(t_i=2)= 2(2)+1=5

Substitute the knowns into the average velocity equation.

\displaystyle v_f=\frac{y(t_f)-y(t_i)}{t_f-t_i}=\frac{15-5}{7-2}=\frac{10}{5}=2

Example Question #91 : Calculus

Find the instantaneous velocity at \displaystyle t=1 if the position function is described by \displaystyle s(t)= 5ln(t)+4t.

Possible Answers:

\displaystyle 4

\displaystyle 9

\displaystyle 0

\displaystyle 5

\displaystyle 2

Correct answer:

\displaystyle 9

Explanation:

Do not confuse average velocity with instantaneous velocity.  To determine the instantaneous velocity, take the derivative of the position function to obtain the velocity function.

\displaystyle s(t)= 5ln(t)+4t

\displaystyle v(t)= \frac{5}{t}+4

Substitute \displaystyle t=1.

\displaystyle v(t)= \frac{5}{1}+4=9

Example Question #91 : Calculus

For this question, keep in mind that velocity is defined as \displaystyle \frac{position}{time}.

If a particle's position is given by the equation \displaystyle y = 2x, what is the particle's velocity at \displaystyle x = 4?

Possible Answers:

\displaystyle x^2

\displaystyle 2

\displaystyle 8

\displaystyle 0

\displaystyle 2x

Correct answer:

\displaystyle 2

Explanation:

Velocity can be viewed at the derivative of position, i.e. the rate of change of a position function.

So, we can find velocity by finding the derivative of the position function.

The position function is given as \displaystyle y = 2x, so the derivative of the position function, using the power rule is,

\displaystyle f(x)=x^n \rightarrow f'(x)=nx^{n-1}

 \displaystyle y=2x\rightarrow y'=1\cdot 2x^{1-1}=2x^0=2, a constant, and the velocity function is thus always \displaystyle 2.

Example Question #92 : Calculus

The position of a marble is defined by the equation \displaystyle p(t)=7t^{2}-2t+5. What is the velocity of the marble at \displaystyle t=3?

Possible Answers:

\displaystyle 39

\displaystyle 40

\displaystyle 41

\displaystyle 42

\displaystyle 38

Correct answer:

\displaystyle 40

Explanation:

By definition, velocity is the first derivative of a position function.

Therefore, \displaystyle v(t)=p'(t).

For this particular problem we will use the power rule to find the derivative. The power rule states,

\displaystyle f(x)=x^n \rightarrow f'(x)=nx^{n-1}

Since 

\displaystyle p(t)=7t^{2}-2t+5,  then applying the power rule we find 

\displaystyle v(t)=p'(t)=14t-2.

Plugging in \displaystyle t=3 gets us,

 \displaystyle v(t)=p'(t)=14(3)-2=42-2=40.

Example Question #91 : Calculus

A tortoise's position is defined by the equation \displaystyle p(t)=4t^{2}+9t+13. What is the velocity of the tortoise at \displaystyle t=4?

Possible Answers:

\displaystyle 42

\displaystyle 40

\displaystyle 41

\displaystyle 43

\displaystyle 44

Correct answer:

\displaystyle 41

Explanation:

By definition, velocity is the first derivative of a position function.

Therefore, \displaystyle v(t)=p'(t).

For this particular problem we will use the power rule to find the derivative. The power rule states,

\displaystyle f(x)=x^n \rightarrow f'(x)=nx^{n-1}

Since \displaystyle p(t)=4t^{2}+9t+13, then applying the power rule we find \displaystyle v(t)=p'(t)=8t+9.

Plugging in \displaystyle t=4 gets us \displaystyle v(t)=p'(t)=8(4)+9=32+9=41.

Example Question #93 : Calculus

A speedboat's position is defined by the equation \displaystyle p(t)=8t^{2}-6t+5. What is the velocity of the speedboat at \displaystyle t=7?

Possible Answers:

\displaystyle 107

\displaystyle 106

\displaystyle 103

\displaystyle 105

\displaystyle 104

Correct answer:

\displaystyle 106

Explanation:

By definition, velocity is the first derivative of a position function. Therefore, \displaystyle v(t)=p'(t).

For this particular problem we will use the power rule to find the derivative.

The power rule states,

\displaystyle f(x)=x^n \rightarrow f'(x)=nx^{n-1}

Since \displaystyle p(t)=8t^{2}-6t+5, then applying the power rule we find \displaystyle v(t)=p'(t)=16t-6.

Plugging in \displaystyle t=7 gets us \displaystyle v(t)=p'(t)=16(7)-6=112-6=106.

Example Question #94 : Calculus

What is the velocity of an object with a position function \displaystyle p(t)=4t^{2}+9t-7 at \displaystyle t=7?

Possible Answers:

\displaystyle 32

\displaystyle 79

\displaystyle 77

\displaystyle 64

\displaystyle 65

Correct answer:

\displaystyle 65

Explanation:

Velocity is the first derivative of position, or \displaystyle v(t)=p'(t).

Given, 

\displaystyle p(t)=4t^{2}+9t-7 we can use the power rule which states, 

\displaystyle f(x)=x^n \rightarrow f'(x)=nx^{n-1}.

Applying this rule we can deduce that, 

\displaystyle v(t)=p'(t)=8t+9 .

Swapping in \displaystyle t=7, we get 

\displaystyle v(7)=8(7)+9=56+9=65.

Example Question #95 : Calculus

What is the velocity of a car with a position function \displaystyle p(t)=6t^{2}-7t+12 at \displaystyle t=4?

Possible Answers:

\displaystyle 42

\displaystyle 34

\displaystyle 55

\displaystyle 35

\displaystyle 41

Correct answer:

\displaystyle 41

Explanation:

Velocity is the first derivative of position, or \displaystyle v(t)=p'(t).

Given, 

\displaystyle p(t)=6t^{2}-7t+12,

we can use the power rule which states, 

\displaystyle f(x)=x^n \rightarrow f'(x)=nx^{n-1}.

Applying this rule we can deduce that, 

\displaystyle v(t)=p'(t)=12t-7.

Swapping in \displaystyle t=4, we get 

\displaystyle v(4)=12(4)-7=48-7=41.

Example Question #96 : Calculus

What is the velocity of a speedboat with a position function \displaystyle p(t)=9t^{2}+14t+15 at \displaystyle t=5?

Possible Answers:

\displaystyle 104

\displaystyle 93

\displaystyle 105

\displaystyle 92

\displaystyle 85

Correct answer:

\displaystyle 104

Explanation:

Velocity is the first derivative of position, or \displaystyle v(t)=p'(t).

Given, 

\displaystyle p(t)=9t^{2}+14t+15,

we can use the power rule which states, 

\displaystyle f(x)=x^n \rightarrow f'(x)=nx^{n-1}.

Applying the power rule we can deduce that, 

\displaystyle v(t)=p'(t)=18t+14.

Swapping in \displaystyle t=5, we get 

\displaystyle v(5)=18(5)+14=90+14=104.

Example Question #91 : Calculus

Given a particle's position as a function of time, determine its velocity at a time of 4 seconds.

\displaystyle p(t) = 10 m + 25 (m/s^2 ) \cdot t^2

Possible Answers:

\displaystyle 200 m/s

\displaystyle 410 m/s

\displaystyle 100 m/s

\displaystyle 25 m/s

Correct answer:

\displaystyle 200 m/s

Explanation:

Since velocity is a rate change of position with respect to time, we need to take the derivative of the position function with respect to time:

\displaystyle v(t) = x'(t) = 2 \cdot (25 m/s^2 ) \cdot t

At 

\displaystyle t = 4 s

\displaystyle v(4 s) = (50 m/s^2) \cdot 4 s = 200 m/s

Learning Tools by Varsity Tutors