Calculus 1 : How to find differential functions

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #381 : How To Find Differential Functions

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

 

Then take the difference of the two and divide by the interval.

 

Now find the derivative of the function; this will be solved for the value(s) found above.

Multiple solutions will solve this function, but on the interval , only  fits within, satisfying the MVT.

Example Question #382 : Other Differential Functions

Let  on the interval . Find a value for the number that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval :

Then take the difference of the two and divide by the interval.

 

Now find the derivative of the function; this will be solved for the value found above.

 which falls within 

Example Question #561 : Differential Functions

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of   on the interval 

Then take the difference of the two and divide by the interval.

 

Now find the derivative of the function; this will be solved for the value(s) found above.

 which falls within , satisfying the MVT.

Example Question #3 : The Mean Value Theorem

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

Now find the derivative of the function; this will be solved for the value(s) found above.

 which falls within the interval , satisfying the MVT.

Example Question #381 : Other Differential Functions

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

Now find the derivative of the function; this will be solved for the value(s) found above.

 which falls within the interval , satisfying the MVT.

Example Question #382 : Other Differential Functions

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

Now find the derivative of the function; this will be solved for the value(s) found above.

Of the two slutions  falls within  to satisfy the MVT.

Example Question #383 : Other Differential Functions

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

 

Now find the derivative of the function; this will be solved for the value(s) found above.

 which falls between , satisfying the mean value theorem.

 

Example Question #1 : The Mean Value Theorem

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

Now find the derivative of the function; this will be solved for the value(s) found above.

, which falls between , satisfying the MVT.

 

Example Question #384 : Other Differential Functions

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of   on the interval 

 

Then take the difference of the two and divide by the interval.

Now find the derivative of the function; this will be solved for the value(s) found above.

This would best be solved using a numerical solver

 which falls within , satisfying the mean value theorem.

Example Question #385 : Other Differential Functions

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

Now find the derivative of the function; this will be solved for the value(s) found above.

 which falls within , satisfying the mean value theorem.

Learning Tools by Varsity Tutors