Calculus 1 : Functions

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Midpoint Riemann Sums

Approximate the integral of the function \displaystyle f(x)=2+2e^{(x-1)^2} for \displaystyle x =1 to \displaystyle 4 using midpoint Reimann sums and two midpoints. 

Possible Answers:

\displaystyle 2085.19

\displaystyle 32431.21

\displaystyle 154724.12

\displaystyle 230.39

\displaystyle 485.22

Correct answer:

\displaystyle 485.22

Explanation:

The form of a Riemann sum follows:

\displaystyle \int_{a}^{b}f(x)dx\approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

Since two mid points are asked for, divide the interval into two: \displaystyle [1,2.5][2.5,4], and find the mid points of those: \displaystyle [1.75,3.25].

Therefore, the approximation of the integral is:

\displaystyle \frac{4-1}{2}((2+2e^{(1.75-1)^2})+(2+2e^{(3.25-1)^2}))

\displaystyle \frac{3}{2}(4+2e^{(0.75)^2}+2e^{(2.25)^2})

\displaystyle 485.22

Example Question #31 : How To Find Midpoint Riemann Sums

Approximate the integral \displaystyle \int_{0}^{4}cos(e^x)dx using the method of midpoint Reimann sums and two midpoints.

Possible Answers:

\displaystyle 0.242

\displaystyle 0.484

\displaystyle -0.166

\displaystyle -1.166

\displaystyle -0.332

Correct answer:

\displaystyle -1.166

Explanation:

The form of a Riemann sum follows:

\displaystyle \int_{a}^{b}f(x)dx\approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

For two intervals of length \displaystyle \frac{4-0}{2}=2, the midpoints are \displaystyle [1,3].

Therefore, the approximation of the integral is:

\displaystyle \frac{4-0}{2}(cos(e^1)cos(e^3))

\displaystyle -1.16627...

Example Question #31 : How To Find Midpoint Riemann Sums

Approximate the integral of \displaystyle f(x)=x^2 for \displaystyle x = 2 to \displaystyle 8 using midpoint Reimann sums and three midpoints.

Possible Answers:

\displaystyle 112

\displaystyle 232

\displaystyle 166

\displaystyle 56

\displaystyle 83

Correct answer:

\displaystyle 166

Explanation:

The form of a Riemann sum follows:

\displaystyle \int_{a}^{b}f(x)dx\approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

The interval \displaystyle [2,8] can be divided into three intervals of length \displaystyle \frac{8-2}{3}=2

\displaystyle [2,4][4,6][6,8], with midpoints of \displaystyle [3,5,7].

Therefore, the approximation of the integral is:

\displaystyle \frac{8-2}{3}(3^2+5^2+7^2)

\displaystyle 166

 

Example Question #34 : How To Find Midpoint Riemann Sums

Using midpoint Riemann sums and three mid points, approximate the area between the functions \displaystyle h(x)=x and \displaystyle g(x)=\frac{x^2}{9}.

Possible Answers:

\displaystyle 15.75

\displaystyle 12

\displaystyle 14.25

\displaystyle 4

\displaystyle 14

Correct answer:

\displaystyle 14.25

Explanation:

The form of a Riemann sum follows:

\displaystyle \int_{a}^{b}f(x)dx\approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It can be applied to combinations of functions, i.e. \displaystyle f(x)=h(x)-g(x)

To find the interval for this problem, find the intersections of the two functions, i.e. the values of \displaystyle x that satisfy

\displaystyle x=\frac{x^2}{9}

\displaystyle x\left(\frac{x}{9}-1\right)=0

\displaystyle x=0,9

Knowing this interval, it can be divided into three intervals of length \displaystyle \frac{9-0}{3}=3:

\displaystyle [0,3][3,6][6,9], with midpoints \displaystyle [1.5,4.5,7.5].

So the approximation of the area between functions is:

\displaystyle \frac{9-0}{3}\left(\left(1.5-\frac{1.5^2}{9}\right)+\left(4.5-\frac{4.5^2}{9}\right)+\left(7.5-\frac{7.5^2}{9}\right)\right)

\displaystyle 14.25

Example Question #31 : How To Find Midpoint Riemann Sums

Using the method of midpoint Reimann sums, take the integral of the function \displaystyle f(x)=sin(x^2) over the interval \displaystyle x=[0,\sqrt{\pi}] using four midpoints.

Possible Answers:

\displaystyle 2.090

\displaystyle 3.337

\displaystyle 3.704

\displaystyle 0.834

\displaystyle 0.926

Correct answer:

\displaystyle 0.926

Explanation:

The form of a Riemann sum follows:

\displaystyle \int_{a}^{b}f(x)dx\approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

The interval \displaystyle [0,\sqrt{\pi}] can be divided into four intervals of length 

\displaystyle \frac{\sqrt{\pi}-0}{4}=\frac{\sqrt{\pi}}{4}.

\displaystyle \left[0,\frac{\sqrt{\pi}}{4}\right]\left[\frac{\sqrt{\pi}}{4},\frac{\sqrt{\pi}}{2}\right]\left[\frac{\sqrt{\pi}}{2},\frac{3\sqrt{\pi}}{4}\right]\left[\frac{3\sqrt{\pi}}{4},\pi\right]

With the midpoints

\displaystyle \left[\frac{\sqrt{\pi}}{8},\frac{3\sqrt{\pi}}{8},\frac{5\sqrt{\pi}}{8},\frac{7\sqrt{\pi}}{8}\right].

Therefore, the approximation of the integral is:

\displaystyle \frac{\sqrt{\pi}-0}{4}\left(sin\left(\left(\frac{\sqrt{\pi}}{8}\right)^2\right)+sin\left(\left(\frac{3\sqrt{\pi}}{8}\right)^2\right)+sin\left(\left(\frac{5\sqrt{\pi}}{8}\right)^2\right)+sin\left(\left(\frac{7\sqrt{\pi}}{8}\right)^2\right)\right)

\displaystyle 0.926

Example Question #1061 : Calculus

Find the midpoint Reimann sum for the integral of the function \displaystyle f(x)=e^{cos(x)} over the interval \displaystyle x=[0,2\pi] using four midpoints.

Possible Answers:

\displaystyle \frac{\pi}{2}(e^{\frac{1}{\sqrt2}}+e^{-\frac{1}{\sqrt2}})

\displaystyle \frac{\pi}{2}(e^{\frac{1}{2}}+e^{-\frac{1}{2}})

\displaystyle \pi(2e^{\frac{1}{\sqrt2}}+2e^{-\frac{1}{\sqrt2}})

\displaystyle \pi(e^{\frac{1}{2}}+e^{-\frac{1}{2}})

\displaystyle \pi(e^{\frac{1}{\sqrt2}}+e^{-\frac{1}{\sqrt2}})

Correct answer:

\displaystyle \pi(e^{\frac{1}{\sqrt2}}+e^{-\frac{1}{\sqrt2}})

Explanation:

The form of a Riemann sum follows:

\displaystyle \int_{a}^{b}f(x)dx\approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

The interval \displaystyle [0,2\pi] can be divided into four intervals of length \displaystyle \frac{2\pi-0}{4}=\frac{\pi}{2}

with mid points \displaystyle \left[\frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4}\right].

 

The Riemann sum is then

\displaystyle \frac{2\pi-0}{4}(e^{cos(\frac{\pi}{4})}+e^{cos(\frac{3\pi}{4})}+e^{cos(\frac{5\pi}{4})}+e^{cos(\frac{7\pi}{4})})

\displaystyle \pi(e^{\frac{1}{\sqrt2}}+e^{-\frac{1}{\sqrt2}})

Example Question #34 : How To Find Midpoint Riemann Sums

Use midpoint Riemann Sums to approximate the area between the \displaystyle x-axis and the function \displaystyle f(x)=\frac{1}{4}x^2 + 2 for \displaystyle -2 \leq x \leq 5. Use seven intervals \displaystyle n=7.

Possible Answers:

\displaystyle 24.9375

\displaystyle 10.6875

\displaystyle 10.9375

\displaystyle 22.75

\displaystyle 22.875

Correct answer:

\displaystyle 24.9375

Explanation:

First, graph the equation to see if it is above the x-axis - positive, or below - negative. Then we can visualize the intervals and their midpoints:

Riemann 1

Dividing the region from \displaystyle x=-2 to \displaystyle x=5 into 7 intervals gives each a length \displaystyle \Delta x of exactly 1. 

We will be calculating the sum \displaystyle A \approx \sum_{7}^{n=1}f(x_{n})*\Delta x where \displaystyle x{_{n}} is the nth interval's midpoint. Since \displaystyle \Delta x is jus 1, in this case we're just adding together this sum:

\displaystyle f(-1.5)+f(-0.5)+f(0.5)+f(1.5)+f(2.5)+f(3.5)+f(4.5)

Evaluating at these points and adding the results together yields \displaystyle 24.9375

Example Question #32 : Midpoint Riemann Sums

Use Riemann midpoint sums to approximate the area between the curve \displaystyle g(x)=\frac{1}{10}x^3 - \frac{1}{2}x+4 and the \displaystyle x-axis between \displaystyle x=0 and \displaystyle x=3. Use five intervals \displaystyle n=5.

Possible Answers:

\displaystyle 15.8825

\displaystyle 9.5295

\displaystyle 18.9013

\displaystyle 11.7345

\displaystyle 19.5575

Correct answer:

\displaystyle 11.7345

Explanation:

We are looking to approximate the area between 0 and 3, and we are dividing it into 5 intervals, so each interval will have a length of \displaystyle \Delta x=\frac{3-0}{5}=0.6.

The midpoints of the 5 intervals are at \displaystyle x=0.3, 0.9, 1.5, 2.1, 2.7, so we'll be evaluating the function for these values of x.

Riemann 2

The formula for the Riemann midpoint sum is \displaystyle A \approx \sum_{n=1}^{5}f(x_{n})*\Delta x.

Note that you get the same answer regardless if you multiply each individual \displaystyle f(x_{n}) times \displaystyle \Delta x or calculate the sum first then multiply by 0.6.

In this case, adding together the heights at the midpoints and multiplying by 0.6 yields \displaystyle 11.7345

Example Question #1062 : Calculus

Consider the function \displaystyle y=ln(sin(x)) between \displaystyle x=1 and \displaystyle x= 2. Find the definite integral using midpoint Riemann sums with two rectangles.

Possible Answers:

\displaystyle \frac{[ln(sin(1.25)+ln(sin(1.75))]}{2}

\displaystyle 0

\displaystyle \frac{ln(sin(3))}{2}

\displaystyle \frac{ln(3)}{2}

Correct answer:

\displaystyle \frac{[ln(sin(1.25)+ln(sin(1.75))]}{2}

Explanation:

Midpoint sums are given by the formula

\displaystyle \int_{a}^{b}f(x)\approx \frac{b-a}{n}*[f(x_{1})+f(x_2)],

where n is the number of steps and the x values are the midpoints of the rectangles. 

Since we have 2 steps, there would be 2 rectangles, from \displaystyle x: (1,1.5) and the other one \displaystyle x:(1.5, 2). The heights of these rectangles are calculated at the midpoint of the two ends, which occur at \displaystyle x=1.25 and \displaystyle x=1.75

In our case, the rectangle midpoints are at 1.25 and 1.75, since we only have 2 steps. 

Therefore, the value is

\displaystyle \frac{2-1}{2}*[ln(sin(1.25)+ln(sin(1.75))]=\frac{[ln(sin(1.25)+ln(sin(1.75))]}{2}

 

 

Example Question #31 : Differential Functions

Using the method of midpoint Riemann sums, approximate the integral of the function \displaystyle f(x)=cos(x^2+x+1) over the interval \displaystyle x=0,2\pi using four midpoints.

Possible Answers:

\displaystyle \\ \left(cos\left(\frac{\pi^2}{16}+\left(\frac{\pi}{4}\right)+1\right)+cos\left(\frac{9\pi^2}{16}\right)+\left(\frac{3\pi}{4}\right)+1\right)+cos\left(\left(\frac{25\pi^2}{16}\right)+\left(\frac{5\pi}{4}\right)+1\right)

\displaystyle \\ \frac{\pi}{2}\left(cos\left(\frac{\pi^2}{16}+\left(\frac{\pi}{4}\right)+1\right)+cos\left(\frac{9\pi^2}{16}\right)+\left(\frac{3\pi}{4}\right)+1\right)+cos\left(\left(\frac{25\pi^2}{16}\right)+\left(\frac{5\pi}{4}\right)+1\right)+cos\left(\left(\frac{49\pi^2}{16}\right)+\left(\frac{7\pi}{4}\right)+1\right)\right)

\displaystyle \\ \left(cos\left(\frac{\pi^2}{8}+\left(\frac{\pi}{2}\right)+1\right)+cos\left(\frac{9\pi^2}{16}\right)+\left(\frac{3\pi}{4}\right)+1\right)+cos\left(\left(\frac{25\pi^2}{16}\right)+\left(\frac{5\pi}{4}\right)+1\right)+cos\left(\left(\frac{49\pi^2}{16}\right)+\left(\frac{7\pi}{4}\right)+1\right)\right)

\displaystyle \\ \frac{\pi}{2}\left(cos\left(\frac{\pi^2}{4}+\left(\frac{\pi}{3}\right)+1\right)+cos\left(\frac{9\pi^2}{4}\right)+\left(\frac{3\pi}{2}\right)+1\right)+cos\left(\left(\frac{5\pi^2}{16}\right)+\left(\frac{5\pi}{4}\right)+1\right)+cos\left(\left(\frac{16\pi^2}{49}\right)+\left(\frac{7\pi}{4}\right)+1\right)\right)

\displaystyle \\ \left(cos\left(\frac{\pi^2}{16}+\left(\frac{\pi}{4}\right)+1\right)+cos\left(\frac{9\pi^2}{16}\right)+\left(\frac{3\pi}{4}\right)+1\right)+cos\left(\left(\frac{25\pi^2}{16}\right)+\left(\frac{5\pi}{4}\right)+1\right)+cos\left(\left(\frac{49\pi^2}{16}\right)+\left(\frac{7\pi}{4}\right)+1\right)\right)

Correct answer:

\displaystyle \\ \frac{\pi}{2}\left(cos\left(\frac{\pi^2}{16}+\left(\frac{\pi}{4}\right)+1\right)+cos\left(\frac{9\pi^2}{16}\right)+\left(\frac{3\pi}{4}\right)+1\right)+cos\left(\left(\frac{25\pi^2}{16}\right)+\left(\frac{5\pi}{4}\right)+1\right)+cos\left(\left(\frac{49\pi^2}{16}\right)+\left(\frac{7\pi}{4}\right)+1\right)\right)

Explanation:

The general formula for a Reimann with n intervals from a to b is:

\displaystyle \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

The term \displaystyle \frac{b-a}{n} is also the length of an interval, so for this problem, an interval has a length of:

\displaystyle \frac{2\pi-0}{4}=\frac{\pi}{2}

And the four midpoints are thus:

\displaystyle \frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4}

And the midpoint Reimann sum is:

\displaystyle \frac{\pi}{2}\left(cos\left(\left(\frac{\pi}{4}\right)^2+\left(\frac{\pi}{4}\right)+1\right)+cos\left(\left(\frac{3\pi}{4}\right)^2+\left(\frac{3\pi}{4}\right)+1\right)+cos\left(\left(\frac{5\pi}{4}\right)^2+\left(\frac{5\pi}{4}\right)+1\right)+cos\left(\left(\frac{7\pi}{4}\right)^2+\left(\frac{7\pi}{4}\right)+1\right)\right)

\displaystyle \\ \frac{\pi}{2}\left(cos\left(\frac{\pi^2}{16}+\left(\frac{\pi}{4}\right)+1\right)+cos\left(\frac{9\pi^2}{16}\right)+\left(\frac{3\pi}{4}\right)+1\right)+cos\left(\left(\frac{25\pi^2}{16}\right)+\left(\frac{5\pi}{4}\right)+1\right)+cos\left(\left(\frac{49\pi^2}{16}\right)+\left(\frac{7\pi}{4}\right)+1\right)\right)

Learning Tools by Varsity Tutors