Calculus 1 : Calculus

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #861 : Functions

Determine the slope of the line that is tangent to the function  at the point 

Possible Answers:

Correct answer:

Explanation:

The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.

We'll need to make use of the following derivative rule(s):

Derivative of a natural log: 

Trigonometric derivative: 

Note that u may represent large functions, and not just individual variables!

Taking the derivative of the function  at the point 

The slope of the tangent is

 

Example Question #1891 : Calculus

Determine the slope of the line that is tangent to the function  at the point 

Possible Answers:

Correct answer:

Explanation:

The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.

We'll need to make use of the following derivative rule(s):

Trigonometric derivative: 

Note that u may represent large functions, and not just individual variables!

Taking the derivative of the function  at the point 

The slope of the tangent is

 

Example Question #862 : Functions

Determine the slope of the line that is tangent to the function  at the point 

Possible Answers:

Correct answer:

Explanation:

The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.

We'll need to make use of the following derivative rule(s):

Trigonometric derivative: 

Note that u may represent large functions, and not just individual variables!

Taking the derivative of the function  at the point 

The slope of the tangent is

 

Example Question #861 : Differential Functions

Determine the slope of the line that is tangent to the function  at the point 

Possible Answers:

Correct answer:

Explanation:

The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.

Taking the derivative of the function  at the point 

The slope of the tangent is

 

Example Question #679 : Other Differential Functions

Determine the slope of the line that is tangent to the function  at the point 

Possible Answers:

Correct answer:

Explanation:

The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.

We'll need to make use of the following derivative rule(s):

Trigonometric derivative: 

Note that u may represent large functions, and not just individual variables!

Taking the derivative of the function  at the point 

The slope of the tangent is

 

Example Question #680 : Other Differential Functions

Determine the slope of the line that is tangent to the function  at the point 

Possible Answers:

Correct answer:

Explanation:

The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.

We'll need to make use of the following derivative rule(s):

Derivative of an exponential: 

Trigonometric derivative: 

Note that u may represent large functions, and not just individual variables!

Taking the derivative of the function  at the point 

The slope of the tangent is

 

Example Question #861 : Functions

Determine the slope of the line that is tangent to the function  at the point 

Possible Answers:

Correct answer:

Explanation:

The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.

We'll need to make use of the following derivative rule(s):

Derivative of an exponential: 

Product rule: 

Note that u and v may represent large functions, and not just individual variables!

Taking the derivative of the function  at the point 

The slope of the tangent is

 

Example Question #682 : How To Find Differential Functions

Determine the slope of the line that is tangent to the function  at the point 

Possible Answers:

Correct answer:

Explanation:

The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.

We'll need to make use of the following derivative rule(s):

Derivative of an exponential: 

Trigonometric derivative: 

Product rule: 

Note that u and v may represent large functions, and not just individual variables!

Taking the derivative of the function  at the point 

The slope of the tangent is

 

Example Question #683 : How To Find Differential Functions

Determine the slope of the line that is tangent to the function  at the point 

Possible Answers:

Correct answer:

Explanation:

The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.

We'll need to make use of the following derivative rule(s):

Trigonometric derivative: 

Note that u may represent large functions, and not just individual variables!

Taking the derivative of the function  at the point 

The slope of the tangent is

 

Example Question #684 : How To Find Differential Functions

Determine the slope of the line that is tangent to the function  at the point 

Possible Answers:

Correct answer:

Explanation:

The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.

We'll need to make use of the following derivative rule(s):

Derivative of a natural log: 

Trigonometric derivative: 

Note that u may represent large functions, and not just individual variables!

Taking the derivative of the function

The slope of the tangent is  at the point 

 

Learning Tools by Varsity Tutors