Calculus 1 : Calculus

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #61 : Functions

Using the method of midpoint Reimann sums, approximate the integral \displaystyle \int_{\pi}^{4\pi} \frac{sin(x)}{x^2}dx using three midpoints 

Possible Answers:

\displaystyle \frac{836}{75\pi^2}

\displaystyle \frac{836}{225\pi^2}

\displaystyle \frac{836}{225\pi}

\displaystyle \frac{836}{75\pi}

\displaystyle \frac{836}{225}\pi

Correct answer:

\displaystyle \frac{836}{225\pi}

Explanation:

A Reimann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

So the interval is \displaystyle [\pi,4\pi], the subintervals have length \displaystyle \frac{4\pi-\pi}{3}=\pi, and since we are using the midpoints of each interval, the x-values are \displaystyle [0.5\pi,1.5\pi,2.5\pi]

\displaystyle \int_{\pi}^{4\pi} \frac{sin(x)}{x^2}dx \approx \pi[\frac{sin(0.5\pi)}{(0.5\pi)^2}+\frac{sin(1.5\pi)}{(1.5\pi)^2}+\frac{sin(2.5\pi)}{(2.5\pi)^2}]

\displaystyle \int_{\pi}^{4\pi} \frac{sin(x)}{x^2}dx \approx \frac{836}{225\pi}

Example Question #62 : Midpoint Riemann Sums

Using the method of midpoint Reimann sums, approximate the integral \displaystyle \int_5^{11} \frac{ln^2(x)}{x^3} using three midpoints.

Possible Answers:

\displaystyle 0.0572

\displaystyle .0798

\displaystyle .0399

\displaystyle 0.0286

\displaystyle .1134

Correct answer:

\displaystyle 0.0572

Explanation:

A Reimann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

Our integral is \displaystyle \int_5^{11} \frac{ln^2(x)}{x^3}

So the interval is \displaystyle [5,11], the subintervals have length \displaystyle \frac{11-5}{3}=2, and since we are using the midpoints of each interval, the x-values are \displaystyle [6,8,10]

\displaystyle \int_5^{11} \frac{ln^2(x)}{x^3} \approx 2[\frac{ln^2(6)}{6^3}+\frac{ln^2(8)}{8^3}+\frac{ln^2(10)}{10^3}]

\displaystyle \int_5^{11} \frac{ln^2(x)}{x^3} \approx 0.0572

Example Question #63 : Differential Functions

Using the method of midpoint Reimann sums, approximate the integral \displaystyle \int_{10\pi}^{16\pi}\frac{cos(x^2)}{x}dx using three midpoints.

Possible Answers:

\displaystyle 0.469

\displaystyle -0.052

\displaystyle -0.235

\displaystyle -0.469

\displaystyle -0.104

Correct answer:

\displaystyle -0.104

Explanation:

A Reimann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

The function given is \displaystyle \int_{10}^{16}\frac{cos(x^2)}{x}dx

So the interval is \displaystyle [10\pi,16\pi], the subintervals have length \displaystyle \frac{16\pi-10\pi}{3}=2\pi, and since we are using the midpoints of each interval, the x-values are \displaystyle [11\pi,13\pi,15\pi]

\displaystyle \int_{10}^{16}\frac{cos(x^2)}{x}dx \approx 2\pi[\frac{cos((11\pi)^2)}{11\pi}+\frac{cos((13\pi)^2)}{13\pi}+\frac{cos((15\pi)^2)}{15\pi}]

 

Example Question #64 : Differential Functions

Using the method of midpoint Reimann sums, approximate the integral \displaystyle \int_0^6 (x^2-x)dx using three midpoints.

Possible Answers:

\displaystyle 88

\displaystyle 26

\displaystyle 52

\displaystyle 44

\displaystyle 66

Correct answer:

\displaystyle 52

Explanation:

A Reimann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

Our function is \displaystyle \int_0^6 (x^2-x)dx

So the interval is \displaystyle [0,6], the subintervals have length \displaystyle \frac{6-0}{3}=2, and since we are using the midpoints of each interval, the x-values are \displaystyle [1,3,5]

\displaystyle \int_0^6 (x^2-x)dx\approx 2[(1^2-1)+(3^2-3)+(5^2-5)]

\displaystyle \int_0^6 (x^2-x)dx \approx 52

Example Question #62 : Midpoint Riemann Sums

Using the method of midpoint Reimann sums, approximate the integral \displaystyle \int_0^{12} \frac{x+4}{x+8}dx using three midpoints.

Possible Answers:

\displaystyle \frac{2636}{945}

\displaystyle \frac{2636}{315}

\displaystyle \frac{659}{945}

\displaystyle \frac{10544}{315}

\displaystyle \frac{10544}{945}

Correct answer:

\displaystyle \frac{2636}{315}

Explanation:

A Reimann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

Our integral is \displaystyle \int_0^{12} \frac{x+4}{x+8}dx

So the interval is \displaystyle [0,12], the subintervals have length \displaystyle \frac{12-0}{3}=4, and since we are using the midpoints of each interval, the x-values are \displaystyle [2,6,10]

\displaystyle \int_0^{12} \frac{x+4}{x+8}dx \approx 4[\frac{2+4}{2+8}+\frac{6+4}{6+8}+\frac{10+4}{10+8}]

\displaystyle \int_0^{12} \frac{x+4}{x+8}dx \approx \frac{2636}{315}

Example Question #66 : Differential Functions

Using the method of midpoint Riemann sums, approximate the integral \displaystyle \int_1^4 x^{x-1}dx using three midpoints.

Possible Answers:

\displaystyle 12.0

\displaystyle 28.1

\displaystyle 75.0

\displaystyle 37.3

\displaystyle 14.0

Correct answer:

\displaystyle 28.1

Explanation:

A Riemann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

The integral we are given is \displaystyle \int_1^4 x^{x-1}dx

So the interval is \displaystyle [1,4], the subintervals have length \displaystyle \frac{4-1}{3}=1, and since we are using the midpoints of each interval, the x-values are \displaystyle [1.5,2.5,3.5]

\displaystyle \int_1^4 x^{x-1}dx \approx 1(1.5^{1.5-1}+2.5^{2.5-1}+3.5^{3.5-1})

\displaystyle \int_1^4 x^{x-1}dx \approx (1.5^{0.5}+2.5^{1.5}+3.5^{2.5})

\displaystyle \int_1^4 x^{x-1}dx \approx 28.1

Example Question #67 : Differential Functions

The method of Riemann sums is a way of approximating integrals, often for functions which do not have a defined integral.

Picture an integral \displaystyle \int_a^b f(x)dx

A number of rectangular areas are defined, this number being defined by the amount of points or subintervals selected. Generally, these rectangles have uniform widths (that of the subinterval), given by the formula \displaystyle \frac{b-a}{n} where n is the number of points/subintervals.

Each rectangle differs in height, however, with individual heights defined by the function value at a given point, \displaystyle f(x_i).

The area of a particular rectangle is then \displaystyle \frac{b-a}{n}f(x)dx

Adding each of these rectangles together then gives the integral approximation.

\displaystyle \frac{b-a}{n}\sum_{i=1}^{n}f(x_i)

Knowing this, imagine that the subintervals are not of uniform width.

Denoting a particular subinterval's width as \displaystyle I_i ,

the integral approximation becomes

\displaystyle \sum_{i=1}^{n}I_if(x_i)

Which of the following parameters would give the closest integral approximation of the function:

\displaystyle \int_0^4 x^xdx ?

Possible Answers:

\displaystyle n=7;I_i< I_{i+1}

\displaystyle n=16;I_i>I_{i+1}

\displaystyle n=8;I_i>I_{i+1}

\displaystyle n=16;I_i< I_{i+1}

\displaystyle n=8;I_i< I_{i+1}

Correct answer:

\displaystyle n=16;I_i>I_{i+1}

Explanation:

The more points/intervals that are selected, the closer the Riemann sum approximation becomes to the actual integral value, so n=16 will give a closer approximation than n=8:

Reimannsumcomparison

Now, assuming the amount of points/intervals are fixed, but the actual widths can differ, it would be prudent to have narrower intervals at those regions where the graph is steepest. Relatively flatter regions of the function do not lead to the approximation overshooting or undershooting as much as the steeper areas, as can be seen in the above figure.

Since the function \displaystyle x^x becomes progressively steeper, a better approximation for a fixed number of intervals would have the intervals grow thinner as \displaystyle x increases.

Example Question #68 : Differential Functions

Using the method of midpoint Riemann sums, approximate the integral \displaystyle \int_{10\pi}^{16\pi}e^{\frac{cos(x)}{x}}dx using three midpoints.

Possible Answers:

\displaystyle 3.67

\displaystyle 9.19

\displaystyle 2.93

\displaystyle 5.85

\displaystyle 18.39

Correct answer:

\displaystyle 18.39

Explanation:

A Riemann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

The integral we're given is \displaystyle \int_{10\pi}^{16\pi}e^{\frac{cos(x)}{x}}dx

So the interval is \displaystyle [10\pi,16\pi], the subintervals have length \displaystyle \frac{16\pi-10\pi}{3}=2\pi, and since we are using the midpoints of each interval, the x-values are \displaystyle [11\pi,13\pi,15\pi]

\displaystyle \int_{10\pi}^{16\pi}e^{\frac{cos(x)}{x}}dx \approx 2\pi[e^{\frac{cos(11\pi)}{11\pi}}+e^{\frac{cos(13\pi)}{13\pi}}}+e^{\frac{cos(15\pi)}{15\pi}}}]

\displaystyle \int_{10\pi}^{16\pi}e^{\frac{cos(x)}{x}}dx \approx 18.39

Example Question #69 : Differential Functions

Using the method of midpoint Riemann sums, approximate the area of the region between the functions \displaystyle f(x)=x^{2x} and \displaystyle g(x)=x^x over the interval \displaystyle x=[1,2.5] using three midpoints.

Possible Answers:

\displaystyle 19.28

\displaystyle 9.27

\displaystyle 18.55

\displaystyle 11.23

\displaystyle 37.10

Correct answer:

\displaystyle 18.55

Explanation:

To find the area between two functions, the method traditionally used is to find the difference of the integral values between the larger and smaller function over the specified interval. However, neither of these functions can be integrated, so a method of approximation is useful.

A Riemann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

We're told that we're integrating from 1 to 2.5, so the interval is \displaystyle [1,2.5], the subintervals have length \displaystyle \frac{2.5-1}{3}=0.5, and since we are using the midpoints of each interval, the x-values are \displaystyle [1.25,1.75,2.25].

As \displaystyle f(x)=x^{2x} is greater than \displaystyle g(x)=x^x over the given interval, our approximation looks as follows:

\displaystyle {\int_{1}^{2.5}(x^{2x}-x^x)dx \approx 0.5[(1.25^{2(1.25)}-1.25^{1.25})+(1.75^{2(1.75)}-1.75^{1.75})+(2.25^{2(2.25)}-2.25^{2.25})]}

\displaystyle {\int_{1}^{2.5}(x^{2x}-x^x)dx \approx 18.55

Example Question #1091 : Calculus

A Riemann Sum approximation of an integral \displaystyle \int_a^b (f(x))dx follows the form

\displaystyle \frac{b-a}{n}\sum_{i=1}^{n}f(x_i).

Where n is number of points/subintervals used to approximate the integral.

Knowing this, imagine a modified style of Riemann Sum, such that the subintervals are not of uniform width.

Denoting a particular subinterval's width as \displaystyle I_i ,

the integral approximation becomes

\displaystyle \sum_{i=1}^{n}I_if(x_i).

Which of the following parameters would give the closest integral approximation of the function:

\displaystyle \int_{10}^{100} \frac{e^x}{x^2}dx ?

Possible Answers:

\displaystyle n=20;I_i>I_{i+1}

\displaystyle n=10;I_i>I_{i+1}

\displaystyle n=20;I_i< I_{i+1}

\displaystyle n=10;I_i< I_{i+1}

\displaystyle n=11;I_i< I_{i+1}

Correct answer:

\displaystyle n=20;I_i>I_{i+1}

Explanation:

The more points/intervals that are selected, the closer the Reimann sum approximation becomes to the actual integral value, so n=20 will give a closer approximation than n=10:

Reimannsumcomparison

Now, assuming the amount of points/intervals are fixed, but the actual widths can differ, it would be prudent to have narrower intervals at those regions where the graph is steepest. Relatively flatter regions of the function do not lead to the approximation overshooting or undershooting as much as the steeper areas, as can be seen in the above figure.

Consider the function \displaystyle \frac{e^x}{x^2} over the interval \displaystyle x=[10,100]. The steepness of this graph at a point can be found by taking the function's derivative.

The quotient rule of derivatives states:

\displaystyle d\frac{u}{v}=\frac{vdu-udv}{v^2}

So the derivative is

\displaystyle \frac{x^2e^x-2xe^x}{x^4}

\displaystyle \frac{e^x(x-2)}{x^3}

It might be intuitive to see that the steepness is positive and that it gets progressively greater over the specified interval, although to be precise, we may take the derivative once more to find the rate of change of this steepness and see if it's postive or negative:

\displaystyle \frac{x^4(2xe^x+x^2e^x-2e^x-2xe^x)-4x^3(x^2e^x-2xe^x)}{x^8}

\displaystyle \frac{x^6e^x+6x^4e^x-4x^5e^x}{x^8}

\displaystyle \frac{e^x(x^2-4x+6)}{x^4}

Since this derivative is positive over the specified interval, , and since the slope was shown to be positive as well, the slope is ever-increasing and growing steeper.

The intervals should in turn grow increasingly thinner.

Learning Tools by Varsity Tutors