Basic Geometry : Basic Geometry

Study concepts, example questions & explanations for Basic Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #331 : Basic Geometry

Find the diameter of a circle that has a circumference of \displaystyle 100\pi.

Possible Answers:

\displaystyle 100

\displaystyle 25

\displaystyle 50

\displaystyle 200

Correct answer:

\displaystyle 100

Explanation:

Recall how to find the circumference of a circle:

\displaystyle \text{Circumference}=\text{diameter}\times\pi

If we divide both sides of the equation by \displaystyle \pi, then we can write the following equation:

\displaystyle \text{Diameter}=\frac{\text{Circumference}}{\pi}

We can substitute in the given information to find the diameter of the circle in the question.

\displaystyle \text{Diameter}=\frac{100\pi}{\pi}

Simplify.

\displaystyle \text{Diameter}=100

Example Question #332 : Basic Geometry

Find the diameter of a circle that has a circumference of \displaystyle 18.

Possible Answers:

\displaystyle \frac{9}{\pi}

\displaystyle 18

\displaystyle \frac{36}{\pi}

\displaystyle \frac{18}{\pi}

Correct answer:

\displaystyle \frac{18}{\pi}

Explanation:

Recall how to find the circumference of a circle:

\displaystyle \text{Circumference}=\text{diameter}\times\pi

If we divide both sides of the equation by \displaystyle \pi, then we can write the following equation:

\displaystyle \text{Diameter}=\frac{\text{Circumference}}{\pi}

We can substitute in the given information to find the diameter of the circle in the question.

\displaystyle \text{Diameter}=\frac{18}{\pi}

Example Question #333 : Basic Geometry

Find the diameter of a circle that has a circumference of \displaystyle 91.

Possible Answers:

\displaystyle \frac{182}{\pi}

\displaystyle 91

\displaystyle \frac{91}{\pi}

\displaystyle \frac{100}{\pi}

Correct answer:

\displaystyle \frac{91}{\pi}

Explanation:

Recall how to find the circumference of a circle:

\displaystyle \text{Circumference}=\text{diameter}\times\pi

If we divide both sides of the equation by \displaystyle \pi, then we can write the following equation:

\displaystyle \text{Diameter}=\frac{\text{Circumference}}{\pi}

We can substitute in the given information to find the diameter of the circle in the question.

\displaystyle \text{Diameter}=\frac{91}{\pi}

Example Question #334 : Basic Geometry

Find the diameter of a circle that has a circumference of \displaystyle 45.

Possible Answers:

\displaystyle 22.5

\displaystyle \frac{90}{\pi}

\displaystyle 90

\displaystyle \frac{45}{\pi}

Correct answer:

\displaystyle \frac{45}{\pi}

Explanation:

Recall how to find the circumference of a circle:

\displaystyle \text{Circumference}=\text{diameter}\times\pi

If we divide both sides of the equation by \displaystyle \pi, then we can write the following equation:

\displaystyle \text{Diameter}=\frac{\text{Circumference}}{\pi}

We can substitute in the given information to find the diameter of the circle in the question.

\displaystyle \text{Diameter}=\frac{45}{\pi}

Example Question #335 : Basic Geometry

Find the diameter of a circle that has a circumference of \displaystyle 12.4.

Possible Answers:

\displaystyle 24.8

\displaystyle 12.4

\displaystyle \frac{12.4}{\pi}

\displaystyle \frac{6.2}{\pi}

Correct answer:

\displaystyle \frac{12.4}{\pi}

Explanation:

Recall how to find the circumference of a circle:

\displaystyle \text{Circumference}=\text{diameter}\times\pi

If we divide both sides of the equation by \displaystyle \pi, then we can write the following equation:

\displaystyle \text{Diameter}=\frac{\text{Circumference}}{\pi}

We can substitute in the given information to find the diameter of the circle in the question.

\displaystyle \text{Diameter}=\frac{12.4}{\pi}

Example Question #31 : Diameter

Find the diameter of a circle that has a circumference of \displaystyle 78\pi.

Possible Answers:

\displaystyle 78

\displaystyle \frac{78}{\pi}

\displaystyle 39\pi

\displaystyle 146

Correct answer:

\displaystyle 78

Explanation:

Recall how to find the circumference of a circle:

\displaystyle \text{Circumference}=\text{diameter}\times\pi

If we divide both sides of the equation by \displaystyle \pi, then we can write the following equation:

\displaystyle \text{Diameter}=\frac{\text{Circumference}}{\pi}

We can substitute in the given information to find the diameter of the circle in the question.

\displaystyle \text{Diameter}=\frac{78\pi}{\pi}

Simplify.

\displaystyle \text{Diameter}=78

Example Question #336 : Basic Geometry

Find the diameter of a circle that has a circumference of \displaystyle 992\pi.

Possible Answers:

\displaystyle \frac{496}{\pi}

\displaystyle \frac{992}{\pi}

\displaystyle 1188\pi

\displaystyle 992

Correct answer:

\displaystyle 992

Explanation:

Recall how to find the circumference of a circle:

\displaystyle \text{Circumference}=\text{diameter}\times\pi

If we divide both sides of the equation by \displaystyle \pi, then we can write the following equation:

\displaystyle \text{Diameter}=\frac{\text{Circumference}}{\pi}

We can substitute in the given information to find the diameter of the circle in the question.

\displaystyle \text{Diameter}=\frac{992\pi}{\pi}

Simplify.

\displaystyle \text{Diameter}=992

Example Question #33 : Diameter

Find the diameter of a circle that has a circumference of \displaystyle 1000\pi.

Possible Answers:

\displaystyle 500

\displaystyle 1000

\displaystyle \frac{1000}{\pi}

\displaystyle 100

Correct answer:

\displaystyle 1000

Explanation:

Recall how to find the circumference of a circle:

\displaystyle \text{Circumference}=\text{diameter}\times\pi

If we divide both sides of the equation by \displaystyle \pi, then we can write the following equation:

\displaystyle \text{Diameter}=\frac{\text{Circumference}}{\pi}

We can substitute in the given information to find the diameter of the circle in the question.

\displaystyle \text{Diameter}=\frac{1000\pi}{\pi}

Simplify.

\displaystyle \text{Diameter}=1000

Example Question #32 : How To Find The Length Of The Diameter

If the radius of a circle is \displaystyle 7cm, what is the diameter?

Possible Answers:

\displaystyle 21cm

\displaystyle 9cm

\displaystyle 16cm

\displaystyle 49cm

\displaystyle 14cm

Correct answer:

\displaystyle 14cm

Explanation:

The radius of a circle is half of the diameter, therefore:

\displaystyle 2(radius) = diameter

\displaystyle 2(7) = diameter

\displaystyle 14cm = diameter

Example Question #35 : Diameter

Find the length of the diameter of a circle inscribed in a square that has a diagonal of \displaystyle 3\sqrt2.

Possible Answers:

\displaystyle 6

\displaystyle 3

\displaystyle 3\sqrt2

\displaystyle 3\pi

Correct answer:

\displaystyle 3

Explanation:

13

When you draw out the circle that is inscribed in a square, you should notice two things. The first thing you should notice is that the diagonal of the square is also the hypotenuse of a right isosceles triangle that has the side lengths of the square as its legs. The second thing you should notice is that the diameter of the circle has the same length as the length of one side of the square.

First, use the Pythagorean theorem to find the length of a side of the square.

\displaystyle \text{Diagonal}^2=\text{side}^2+\text{side}^2

\displaystyle 2(\text{side})^2=\text{Diagonal}^2

\displaystyle \text{side}^2=\frac{\text{Diagonal}^2}{2}

\displaystyle \text{side}=\sqrt{\frac{\text{Diagonal}^2}{2}}=\frac{\text{Diagonal}\sqrt2}{2}

Substitute in the length of the diagonal to find the length of the square.

\displaystyle \text{side}=\frac{3\sqrt2(\sqrt2)}{2}

Simplify.

\displaystyle \text{side}=3

Now, recall the relationship between the diameter of the circle and the side of the square.

\displaystyle \text{diameter}=\text{side}=3

Learning Tools by Varsity Tutors