AP Physics C: Mechanics : Electricity

Study concepts, example questions & explanations for AP Physics C: Mechanics

varsity tutors app store varsity tutors android store

Example Questions

Example Question #181 : Ap Physics C

Ap physics c e m potential problems  2 6 16   3

A thin bar of length L lies in the xy plane and carries linear charge density \displaystyle \lambda(x) = bx, where \displaystyle x ranges from 0 to \displaystyle L. Calculate the potential at the point \displaystyle (0, a) on the y-axis.

Possible Answers:

\displaystyle \frac{b}{8\pi\epsilon_0}\sqrt{L^2+a^2}

\displaystyle \frac{b}{8\pi\epsilon_0}\left (\sqrt{L^2+a^2}-a \right )

\displaystyle \frac{b}{4\pi\epsilon_0}\sqrt{L^2+a^2}

\displaystyle \frac{b}{4\pi\epsilon_0}\left (\sqrt{L^2+a^2}-a \right )

\displaystyle \frac{b}{2\pi\epsilon_0}\left (\sqrt{L^2+a^2}-a \right )

Correct answer:

\displaystyle \frac{b}{4\pi\epsilon_0}\left (\sqrt{L^2+a^2}-a \right )

Explanation:

Use the linear charge density \displaystyle \lambda(x)=bx and length element \displaystyle dx, where each point is \displaystyle \sqrt{x^2+a^2} from the point \displaystyle (0,a). The potential is therefore

\displaystyle V=\frac{1}{4\pi\epsilon_0}\int_{0}^{L}\frac{bx}{\sqrt{x^2+a^2}}dx

\displaystyle = \frac{b}{4\pi\epsilon_0}\left [ \sqrt{x^2+a^2}\right ]_{0}^{L}

\displaystyle =\frac{b}{4\pi\epsilon_0}\left (\sqrt{L^2+a^2}-a \right )

Example Question #182 : Ap Physics C

Ap physics c e m potential problems  2 6 16   2

A uniformly charged ring of radius \displaystyle R carries a total charge \displaystyle Q. Calculate the potential a distance \displaystyle a from the center, on the axis of the ring.

Possible Answers:

\displaystyle \frac{Qa}{4\pi\epsilon_0(R^2 + a^2)}

\displaystyle \frac{Q}{4\pi\epsilon_0\sqrt{R^2 + a^2}}

\displaystyle \frac{Q}{4\pi\epsilon_0R\sqrt{R^2 + a^2}}

\displaystyle \frac{Q}{4\pi\epsilon_0(R^2 + a^2)}

\displaystyle \frac{Qa}{4\pi\epsilon_0(R^2+a^2)^{\frac{3}{2}}}

Correct answer:

\displaystyle \frac{Q}{4\pi\epsilon_0\sqrt{R^2 + a^2}}

Explanation:

Use the linear charge density \displaystyle \frac{Q}{2\pi R} and length element \displaystyle Rd\theta. The distance from each point on the ring to the point on the axis is \displaystyle \sqrt{R^2+a^2}. Lastly, integrate over \displaystyle \theta from \displaystyle 0 to \displaystyle 2\pi to obtain

\displaystyle V=\frac{1}{4\pi\epsilon_0}\int_{0}^{2\pi}\left (\frac{Q}{2\pi R} \right )\frac{1}{\sqrt{R^2+a^2}}Rd\theta

\displaystyle =\frac{Q}{4\pi\epsilon_0\sqrt{R^2+a^2}}

Example Question #183 : Ap Physics C

Ap physics c e m potential problems  2 6 16

A uniformly charged square frame of side length \displaystyle a carries a total charge \displaystyle Q. Calculate the potential at the center of the square.

You may wish to use the integral:

\displaystyle \int{\frac{dx}{\sqrt{x^2+b^2}}} = \ln {(\sqrt{x^2+b^2} + x)} + C

Possible Answers:

\displaystyle \frac{2Q}{\pi\epsilon_{0}a}\ln{(1+\sqrt{2})}

\displaystyle \frac{Q}{\pi\epsilon_{0}a}\ln{(1+\sqrt{2})}

\displaystyle \frac{Q}{8\pi\epsilon_{0}a}\ln{(1+\sqrt{2})}

\displaystyle \frac{Q}{2\pi\epsilon_{0}a}\ln{(1+\sqrt{2})}

\displaystyle \frac{Q}{4\pi\epsilon_{0}a}\ln{(1+\sqrt{2})}

Correct answer:

\displaystyle \frac{Q}{2\pi\epsilon_{0}a}\ln{(1+\sqrt{2})}

Explanation:

Calculate the potential due to one side of the bar, and then multiply this by \displaystyle 4 to get the total potential from all four sides. Orient the bar along the x-axis such that its endpoints are at \displaystyle \pm\frac{a}{2}, and use the linear charge density \displaystyle \frac{Q}{4a}. The potential is therefore

\displaystyle V=4\times\left (\frac{1}{4\pi\epsilon_{0}}\int_{-a/2}^{a/2} \left (\frac{Q}{4a} \right )\frac{1}{\sqrt{x^2+\frac{a^2}{4}}}dx\right )

\displaystyle =\frac{Q}{4\pi\epsilon_{0}a}\int_{-a/2}^{a/2} \frac{1}{\sqrt{x^2+\frac{a^2}{4}}}dx

\displaystyle =\frac{Q}{4\pi\epsilon_{0}a}\left[ \ln\left (\sqrt{x^2+\frac{a^2}{4}} +x\right )\right]_{-a/2}^{a/2}

\displaystyle =\frac{Q}{4\pi\epsilon_0a}\ln\left (\frac{\sqrt{2}+1}{\sqrt{2}-1} \right )

\displaystyle =\frac{Q}{2\pi\epsilon_0a}\ln(1+\sqrt{2})

 

 

Example Question #31 : Electricity

Consider a spherical shell with radius \displaystyle R and charge \displaystyle Q. What is the magnitude of the electric field at the center of this spherical shell?

Possible Answers:

\displaystyle \frac{4}{3}Q\pi r^3

\displaystyle \frac{4}{3}kQ\pi r^3

Zero

\displaystyle 4Q\pi r^3

\displaystyle 4kQ\pi r^3

Correct answer:

Zero

Explanation:

According to the shell theorem, the total electric field at the center point of a charged spherical shell is always zero. At this point, any electric field lines will result in symmetry, canceling each other out and creating a net field of zero at that point.

Example Question #31 : Electricity

A charge of unknown value is held in place far from other charges. Its electric field lines and some lines of electric equipotential (V1 and V2) are shown in the diagram.

Onecharge_negative_fieldandpotentiallines

A second point charge, known to be negative, is placed at point A in the diagram. In which direction will the second, negative charge freely move?

Possible Answers:

Toward the original charge Q

Toward point C

It will remain stationary

Toward point A

Correct answer:

Toward point C

Explanation:

The original charge Q is negative, as indicated by the direction of the electric field lines in the diagram. A negative point charge of any value placed at point A will cause both charges to feel a mutually repelling force on each other. Therefore, the second charge will be repelled by the original negative charge with a force pointing radially along a line connecting the center of Q and the point A, resulting in free movement toward C. Additionally, point B is on a line of equipotential to point A; negative point charges will move from regions of lower electric potential to higher electric potential (against the direction of the electric field lines), so point B is not a viable answer.

Learning Tools by Varsity Tutors