AP Physics 2 : Ohm's Law

Study concepts, example questions & explanations for AP Physics 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Circuit Properties

A single  resistor is added in series to a circuit with a  battery. Determine the current.

Possible Answers:

Correct answer:

Explanation:

Use Ohm's law:

Converting  to 

Example Question #21 : Circuits

Combined circuit

In the circuit above, find the current through .

Possible Answers:

None of these

Correct answer:

Explanation:

First, find the total resistance of the circuit.

 and  are in parallel, so we find their equivalent resistance by using the following formula:

Next, add the series resistors together.

Use Ohm's law to find the current in the system.

The current through  and  needs to add up to the total current, since they are in parallel.

 

Also, the voltage drop across them need to be equal, since they are in parallel.

Set up a system of equations.

Solve.

Example Question #21 : Circuits

In the circuit diagram shown below, both resistors have a resistance of  ohms. If resistor  were to be removed from the circuit altogether, how would the current through  change?

Voltage

Possible Answers:

The current will decrease by a factor of 

The current will halve

The current will double

The current will not change

The current will increase by a factor of 

Correct answer:

The current will not change

Explanation:

In this question, we're shown a circuit diagram with two resistors connected in parallel. We're also told that both resistors have the same resistance. We're then asked to determine how the current through one of the resistors will change if the other one is removed.

To answer this question, we'll need to take Ohm's law into account, which states the following.

Moreover, for two resistors connected in parallel, the equivalent resistance is found by summing the inverses of the individual resistors. In the event that two resistors have the same value, as in this case, the equivalent resistance will be cut in half.

Since the equivalent resistance of the circuit is half as great as either resistor, the removal of  will cause the overall resistance of the circuit to become twice as great. When the resistance becomes twice as great, and voltage does not change, the current through the circuit will become halved.

Now, it's important to realize that the current of the entire circuit becomes half as great. But remember that in the original circuit, the overall current (which was twice as great) was split between the two resistors. Thus, even though the overall current in the circuit is being cut in half, the entirety of the new current is flowing solely through . Therefore, the current flowing through this circuit does not change, even though the current for the entire circuit does.

Example Question #21 : Circuit Properties

You have a circuit with a  resistor connected to a  battery. What is the current through the resistor?

Possible Answers:

Correct answer:

Explanation:

To find the current in a circuit with a battery and resistor(s), you use Ohm's Law.

We have the voltage and we have the resistance, so we don't need to rearrange the equation.

Therefore, the current through the resistor is 2 amps ().

Learning Tools by Varsity Tutors