AP Physics 1 : Newtonian Mechanics

Study concepts, example questions & explanations for AP Physics 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #821 : Newtonian Mechanics

2 objects(named object A and object B) of equal masses and initial kinetic energy collide onto one another. During the collision, object A loses \displaystyle \frac{1}{2} of its kinetic energy, which object B gains. Assume mass of both objects remain unchanged.

Given that object A's mass is \displaystyle 5kg and its velocity changes by \displaystyle 3 \frac{m}{s} over a period of \displaystyle 3 seconds, determine the average force applied on object A. 

Possible Answers:

\displaystyle 15N

\displaystyle 30N

\displaystyle 1.7N

\displaystyle 5N

Correct answer:

\displaystyle 5N

Explanation:

Force is given by:

\displaystyle F_{net}=m*a, where \displaystyle m is mass and \displaystyle a is acceleration. 

We're given mass, but we aren't given acceleration. Since the question asks for average force \displaystyle F_{average}, we can determine average acceleration \displaystyle a_{aver}

\displaystyle a_{aver}=\frac{\Delta v}{\Delta t}, where \displaystyle \Delta v is the change in velocity and \displaystyle \Delta t is change in time. 

In our problem, \displaystyle \Delta v= 3\frac{m}{s} and \displaystyle \Delta t= 3s

\displaystyle a_{aver}=\frac{\Delta v}{\Delta t}=\frac{3\frac{m}{s}}{3s}=1\frac{m}{s^2}

\displaystyle F_{average}=m*a_{average}=5kg*1\frac{m}{s^2}=5N

Example Question #13 : Newton's Second Law

A block with a mass of \displaystyle 4kg is pushed across a frictionless surface with a force of \displaystyle 8N for a time of \displaystyle 3 s. What is the velocity of the block after the push?

Possible Answers:

\displaystyle 6\frac{m}{s}

\displaystyle 3\frac{m}{s}

\displaystyle 4\frac{m}{s}

\displaystyle 2\frac{m}{s}

Correct answer:

\displaystyle 6\frac{m}{s}

Explanation:

Here we must use the following formula:

\displaystyle F=ma

We can substitute our known values of mass and force and solve for acceleration

\displaystyle a = \frac{F}{m}= \frac{8N}{4kg}= 2\frac{m}{s^2}

Since we know the acceleration and the time it acts upon the object, we can determine the final velocity through the following equation:

\displaystyle v=at=(2\frac{m}{s^2})(3s)= 6\frac{m}{s}

Example Question #251 : Forces

Consider a block sitting at rest on an inclined plane. Find the maximum inclination angle the plane may have without the block sliding if the coefficients of kinetic and static friction are \displaystyle \mu_k=0.2,\mu_s=0.4, respectively.

Possible Answers:

\displaystyle 21.8^{\circ}

\displaystyle 11.3^{\circ}

\displaystyle 23.6^{\circ}

\displaystyle 31.0^{\circ}

\displaystyle 66.4^{\circ}

Correct answer:

\displaystyle 21.8^{\circ}

Explanation:

If the block is to remain at rest on the plane, we know that the sum of the forces acting a long the plane must be equal and opposite. This means that the gravitational force acting along the plane is equal to and opposite of the force of friction. This can be demonstrated as:

\displaystyle mg\sin{\theta}=\mu_sN=\mu_smg\cos{\theta}

This can be rewritten as:

\displaystyle \tan{\theta}=\mu_s

For the block to remain at rest, the force of static friction must exceed (for this problem we will set them equal to each other since it gives us the best approximation); solve for the angle:

\displaystyle \tan{\theta}=\mu_s

\displaystyle \theta=\tan{^{-1}\mu_s}

Example Question #15 : Newton's Second Law

A force of \displaystyle 15N is applied to a \displaystyle 5kg object in space.

What is the acceleration of the object?

Possible Answers:

\displaystyle 5\frac{m}{s^2}

\displaystyle -5\frac{m}{s^2}

\displaystyle 3\frac{m}{s^2}

\displaystyle 3\frac{m}{s}

\displaystyle -3\frac{m}{s^2}

Correct answer:

\displaystyle 3\frac{m}{s^2}

Explanation:

Newton's second law states:

\displaystyle F=ma

Where \displaystyle F is the net force exerted upon an object, \displaystyle m is the mass of the object and \displaystyle a is the acceleration of the object.

We rearrange this equation to show:

\displaystyle \frac{F}{m}=a

Plug in our given values with \displaystyle F=15N and \displaystyle m=5kg:

\displaystyle \frac{15N}{5kg}=3\frac{m}{s^2}

Example Question #16 : Newton's Second Law

If \displaystyle 20N of force is continuously applied to a box with mass \displaystyle 10kg, what will the box's velocity be after \displaystyle 5s given that it's initial velocity was \displaystyle 0

Possible Answers:

\displaystyle 10\frac{m}{s}

\displaystyle 2\frac{m}{s}

\displaystyle 20 \frac{m}{s}

\displaystyle .1 \frac{m}{s}

Correct answer:

\displaystyle 10\frac{m}{s}

Explanation:

By Newton's second law:

\displaystyle F=m*a, where \displaystyle F is force, \displaystyle m is mass, and \displaystyle a is acceleration.

\displaystyle 20N= 10kg*a

\displaystyle a= 2\frac{m}{s^2} 

This is the acceleration. Since we're assuming this acceleration is constant over time, we can model velocity \displaystyle v as: 

\displaystyle v=a*t+v_0 where \displaystyle v_0 is the initial velocity. 

Since the initial velocity is \displaystyle 0 in our problem, 

\displaystyle v=2*t 

After \displaystyle 5 seconds, 

\displaystyle v=2\frac{m}{s^2}*5s=10\frac{m}{s}

Example Question #17 : Newton's Second Law

A train of mass \displaystyle 5.11*10^{11}kg goes from \displaystyle 50 \frac{km}{hr} to \displaystyle 0 \frac{km}{hr} in \displaystyle 1 km. Calculate the deceleration in terms of \displaystyle g.

Possible Answers:

\displaystyle .075g

\displaystyle .0055g

\displaystyle 1.06g

\displaystyle .0098g

\displaystyle .0101g

Correct answer:

\displaystyle .0098g

Explanation:

Use work:

\displaystyle W=F*d=E_i-E_f

All energy will be kinetic.

\displaystyle F*d=KE_i-KE_f

\displaystyle F*d=.5mv_f^2-.5mv_i^2

Convert \displaystyle \frac{km}{hr} to \displaystyle \frac{m}{s}:

\displaystyle \frac{50km}{hr}*\frac{1000m}{1km}*\frac{1 hr}{3600 s}=13.9\frac{km}{hr}

\displaystyle \frac{0km}{hr}*\frac{1000m}{1km}*\frac{1 hr}{3600 s}=0\frac{km}{hr}

Plug in values. Force will be negative as it is pointing against the direction of travel:

\displaystyle F*1000=.5*5.11*10^{11}*0^2-.5*5.11*10^{11}*(13.9)^2

Solve for \displaystyle F:

\displaystyle F=-4.93*10^{10}

\displaystyle |F|=4.93*10^{10}

Use Newton's second law:

\displaystyle F=ma

Plug in values:

\displaystyle 5.11*10^{11}*a=4.93*10^{10}

Solve for \displaystyle a:

\displaystyle a=\frac{.096m}{s^2}

Convert to \displaystyle g

\displaystyle \frac{.096m}{s^2}*\frac{g}{\frac{9.8m}{s^2}}=.0098g

Example Question #252 : Forces

A train of mass \displaystyle 5.11*10^{11}kg goes from \displaystyle 50 \frac{km}{hr} to \displaystyle 0 \frac{km}{hr} in \displaystyle 1 km. Estimate the coefficient of friction of the steel wheels on the steel rails. Assume the wheels are locked up.

Possible Answers:

\displaystyle .0075

\displaystyle .0322

\displaystyle .0234

\displaystyle .0108

\displaystyle .0098

Correct answer:

\displaystyle .0098

Explanation:

Use work:

\displaystyle W=F*d=E_i-E_f

All energy will be kinetic.

\displaystyle F*d=KE_i-KE_f

\displaystyle F*d=.5mv_f^2-.5mv_i^2

Convert \displaystyle \frac{km}{hr} to \displaystyle \frac{m}{s}:

\displaystyle \frac{50km}{hr}*\frac{1000m}{1km}*\frac{1 hr}{3600 s}=13.9\frac{km}{hr}

\displaystyle \frac{0km}{hr}*\frac{1000m}{1km}*\frac{1 hr}{3600 s}=0\frac{km}{hr}

Plug in values. Force will be negative as it is pointing against the direction of travel:

\displaystyle F*1000=.5*5.11*10^{11}*0^2-.5*5.11*10^{11}*(13.9)^2

Solve for \displaystyle F:

\displaystyle F=-4.93*10^{10}

\displaystyle |F|=4.93*10^{10}

Use frictional force:

\displaystyle F_{fric}=\mu*m*g

Plug in values:

\displaystyle 4.93*10^{10}=\mu*5.11*10^{11}*9.8

Solve for \displaystyle \mu

\displaystyle .0098=\mu

Example Question #31 : Fundamentals Of Force And Newton's Laws

Suppose that an astronaut on the moon applies a horizontal force of \displaystyle 180\:N to a \displaystyle 20\:kg mass that is initially at rest. Considering that the acceleration due to gravity on the moon is \displaystyle 1.6\: \frac{m}{s^{2}} and that there is no friction, what is the acceleration of this object?

Possible Answers:

\displaystyle 9\: \frac{m}{s^{2}}

\displaystyle 5.62\: \frac{m}{s^{2}}

\displaystyle 1.6\: \frac{m}{s^{2}}

\displaystyle 14.4\: \frac{m}{s^{2}}

Correct answer:

\displaystyle 9\: \frac{m}{s^{2}}

Explanation:

In this question, we're told that a horizontal force is being applied to an object on the moon. We're given the magnitude of this force and the mass of the object.

We're also given the acceleration due to gravity on the moon, but this is useless information for the purposes of this question. Since the force under consideration is acting horizontally on the object, and the force due to gravity acts vertically, these two forces are treated separately; the vertical acting force of gravity will not affect the horizontal kinematics of the object's movement.

Thus, this reduces to a simple application of Newton's second law, and we can use the following equation:

\displaystyle F=ma

Rearranging, we can isolate the term for acceleration:

\displaystyle a=\frac{F}{m}

Then plug in the values that we have to solve for our answer:

\displaystyle a=\frac{180\: N}{20\: kg}=9\: \frac{m}{s^{2}}

Example Question #32 : Fundamentals Of Force And Newton's Laws

Consider the following system:

 

Spinning rod with masses at end

Two spherical masses, A and B, are attached to the end of a rigid rod with length l. The rod is attached to a fixed point, p, which is at a height, h, above the ground. The rod spins around the fixed point in a vertical circle that is traced in grey. \displaystyle \angle c is the angle at which the rod makes with the horizontal at any given time (\displaystyle c=0^{\circ} in the figure).

The rod is initially at rest and held in the horizontal position. When it is released, what is the initial instantaneous acceleration of mass A, and in what direction? Assume the rod has a negligible mass. Neglect air resistance and internal frictional forces.

\displaystyle m_A = 20kg, m_B = 15kg, l = 6m

\displaystyle g = 10\frac{m}{s^2}

Possible Answers:

None of the other answers

\displaystyle 5.8\frac{m}{s^2}, clockwise

\displaystyle 3.6\frac{m}{s^2}, counterclockwise

\displaystyle 5.8\frac{m}{s^2}, counterclockwise

\displaystyle 3.6\frac{m}{s^2}, clockwise

Correct answer:

\displaystyle 3.6\frac{m}{s^2}, clockwise

Explanation:

This problem can be solved using the expression relating torque and angular acceleration:

\displaystyle \tau_{net} = I_{net}\alpha

We can determine the total net torque on the system using the Newton's second law.

\displaystyle F_{net}=ma=mg

Applying this to both masses and assuming a force in the downward direction is positive, we get:

\displaystyle F_{A}= m_Ag = (20kg)(10\frac{m}{s^2})=200N

\displaystyle F_B = m_Bg=(15kg)(10\frac{m}{s^2})=150N

Then using the expression for torque, we get:

\displaystyle \tau=Fd

Where d is half the length of the rod.

\displaystyle \tau = F\left ( \frac{1}{2}l\right )

Applying this to both masses and assuming torque in the counterclockwise direction is positive, we get:

\displaystyle \tau_A = F_A\left ( \frac{1}{2}l\right )

\displaystyle \tau_A = \left (200N \right )\left ( \frac{1}{2}(6m)\right )=600N\cdot m

\displaystyle \tau_B = -F_B\left ( \frac{1}{2}l\right )

\displaystyle \tau_B = \left (150N \right )\left ( \frac{1}{2}(6m)\right )=-225N\cdot m

\displaystyle \tau_{net}= \tau_A+\tau_B = 600N\cdot m -225N\cdot m = 375N\cdot m

Now let's go back to the original equation:

\displaystyle \tau_{net}=I_{net}\alpha

Now we need to calculate the net moment of inertia:

 \displaystyle I=mr^2= m_Ar^2+m_Br^2 = (m_A+m_B)r^2

Where r is half the length of the rod:

\displaystyle I= (m_A+m_B)\left ( \frac{1}{2}l\right )^2

\displaystyle I = (20kg + 15kg)\left ( \frac{1}{2}(6m)\right )^2

\displaystyle I = 315kg\cdot m^2

Going back to the original equation and rearranging for angular acceleration:

\displaystyle \alpha=\frac{\tau_{net}}{I_{net}} = \frac{375N\cdot m}{315kg\cdot m^2} = 1.19\frac{1}{s^2}

Then relating this to linear acceleration using:

\displaystyle a = r\alpha

Where r is half the length of the rod again:

\displaystyle a = \left ( \frac{1}{2}l\right )\alpha

We have all of our values, so we can calculate the final answer:

\displaystyle a = \left ( \frac{1}{2}(6m)\right )\left ( 1.19\frac{1}{s^2}\right )

\displaystyle a = 3.6\frac{m}{s^2}

Example Question #41 : Fundamentals Of Force And Newton's Laws

Consider the following system:

Frictionless pully

Two masses, A and B, are attached to the end of a rope that runs through a frictionless pulley.

 

The two masses are initially held at rest. When they are released, what is the initial instantaneous acceleration of mass A, and in what direction? Neglect air resistance and any frictional forces.

\displaystyle m_A = 20kg, m_B = 12kg

\displaystyle g =10\frac{m}{s^2} 

Possible Answers:

\displaystyle 4\frac{m}{s^2}

\displaystyle 5.5\frac{m}{s^2}

\displaystyle 2.5\frac{m}{s^2}

\displaystyle 6\frac{m}{s^2}

\displaystyle 0\frac{m}{s^2}

Correct answer:

\displaystyle 2.5\frac{m}{s^2}

Explanation:

We can use Newton's second law:

\displaystyle F_{net}=ma

There are two forces acting on the system: gravity on each mass. For simplicity sake, we will examine these forces with respect to mass. Therefore, the force on mass B becomes an upward tension force on mass A. Now we need to clarify which direction is positive. For this problem, we'll say that a downward force is positive, and an upward force is negative.

We'll start with the gravitational force:

\displaystyle F_g = m_Ag

Now for tension. The tension force is simply the gravitational force applied to mass B:

\displaystyle F_T = -m_Bg

Note that it's negative because it is in the upward direction

Now adding these together to get the net force:

\displaystyle F_{net}= m_Ag-m_Bg = g(m_A-m_B)

Substituting this back into the original equation, we get:

\displaystyle ma = g(m_A-m_B)

Where m is the combination of both masses:

\displaystyle (m_A+m_B)a=(m_A-m_B)g

Rearrange for acceleration:

\displaystyle a = \frac{g(m_A -m_B)}{m_A+m_B}

We know each value, so we can solve the problem

\displaystyle a = \frac{\left ( 10\frac{m}{s^2}\right )(20kg-12kg)}{20kg+12kg}

\displaystyle a = 2.5\frac{m}{s^2}

Learning Tools by Varsity Tutors