AP Chemistry : Solutions

Study concepts, example questions & explanations for AP Chemistry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #383 : Ap Chemistry

What concentration would you have prepared if you diluted 30mL of a 0.350M salt solution to 50mL?

Possible Answers:

\displaystyle 0.50M

\displaystyle 0.75M

\displaystyle 0.24M

\displaystyle 0.89M

\displaystyle 0.21M

Correct answer:

\displaystyle 0.21M

Explanation:

Use the dilution formula:

\displaystyle M_{1}V_{1}=M_{2}V_{2}

Rearranging this equation gives:

\displaystyle \frac{M_{1}V_{1}}{V_{2}}=M_{2}

Plugging in the values gives:

\displaystyle M_{2}=\frac{0.35\ M * 30\ mL}{50\ mL}= 0.21 M

Therefore, after diluting the solution to 50mL, the solution concentration would be lowered from 0.35M to 0.21M.

Example Question #71 : Solutions And States Of Matter

How many moles are in a 0.010L solution with a concentration that is \displaystyle 5*10^{-3}M?

Possible Answers:

\displaystyle 3*10^{-2}mol

\displaystyle 0.112mol

\displaystyle 2*10^{-5}mol

\displaystyle 5.32mol

\displaystyle 5*10^{-5}mol

Correct answer:

\displaystyle 5*10^{-5}mol

Explanation:

By using the concentration as a conversion factor, the number of moles can calculated by multiplying the concentration by the number of liters.

\displaystyle \frac{5*10^{-3}moles}{L} * 0.010L = 5*10^{-5}moles

Therefore, there are \displaystyle 5*10^{-5}moles in \displaystyle 0.010 L of a \displaystyle 5*10^{-3}M solution.

Example Question #31 : Solutions

In order to prepare a needed solution for an experiment, 0.082 grams of \displaystyle NaCl was dissolved in water to give a 35mL solution. What is the molarity of this solution?

Possible Answers:

\displaystyle 0.40M

\displaystyle 0.040M

\displaystyle 0.34M

\displaystyle 0.409M

\displaystyle 0.45M

Correct answer:

\displaystyle 0.040M

Explanation:

In order to calculate the concentration, we must use molarity formula:

\displaystyle Molarity = \frac{moles\ of\ solute}{volume\ of\ solution\ in\ liters}

We must use the molecular weight of sodium chloride to calculate the moles of solute:

\displaystyle MW=(atomic\ weight\ of\ Na)+(atomic\ weight\ of\ Cl)

\displaystyle MW_{NaCl}=(23 \frac{g}{mole})+(35 \frac{g}{mole})= 58 \frac{g}{mole}

\displaystyle 0.082g*\frac{mole}{58g}=0.0014\ moles\ NaCl

Therefore, the concentration in molarity of this solution is 0.040M.

Example Question #11 : Concentration And Units

How many moles are in 1000mL solution with a concentration that is \displaystyle 3*10^{-5}M?

Possible Answers:

\displaystyle 3*10^{-5}mol

\displaystyle 9*10^{-5}mol

\displaystyle 8*10^{-5}mol

\displaystyle 6.5*10^{-5}mol

\displaystyle 3*10^{-8}mol

Correct answer:

\displaystyle 3*10^{-5}mol

Explanation:

By simply using the concentration as a conversion factor, the number of moles can be calculated by multiplying the concentration by the number of liters. Before calculating the number of moles, the number of milliliters must be converted to liters using the fact that \displaystyle 1\ liter = 1000\ mL.

\displaystyle \frac{3*10^{-5}\ moles}{L} * 1\ L = 3*10^{-5}\ moles

Therefore, there are \displaystyle 3*10^{-5}\ moles in \displaystyle 0.010\ L of a \displaystyle 5*10^{-3}M solution.

Example Question #1 : Precipitates And Calculations

A chemist combines 300 mL of a 0.3 M Na_2SO_4\displaystyle Na_2SO_4 solution with 200 mL of 0.4 M BaCl_2\displaystyle BaCl_2 solution. How many grams of precipitate form?

Possible Answers:

\displaystyle 18.7g

No precipitate is formed

\displaystyle 21.0 g

\displaystyle 58.5 g

\displaystyle 233.4 g

Correct answer:

\displaystyle 18.7g

Explanation:

First, let us write out an ion exchance reaction for the reactants:

Na_2SO_{4\hspace{1 mm}(aq)}+BaCl_{2\hspace{1 mm}(aq)}\rightarrow 2NaCl\hspace{1 mm}+BaSO_4\displaystyle Na_2SO_{4\hspace{1 mm}(aq)}+BaCl_{2\hspace{1 mm}(aq)}\rightarrow 2NaCl\hspace{1 mm}+BaSO_4

By solubility rules, NaCl\displaystyle NaCl is soluble in water and BaSO_4\displaystyle BaSO_4 is not. Our new reaction is:

Na_2SO_{4\hspace{1 mm}(aq)}+BaCl_{2\hspace{1 mm}(aq)}\rightarrow 2NaCl_{(aq)}\hspace{1 mm}+BaSO_{4\hspace{1 mm}(s)}\displaystyle Na_2SO_{4\hspace{1 mm}(aq)}+BaCl_{2\hspace{1 mm}(aq)}\rightarrow 2NaCl_{(aq)}\hspace{1 mm}+BaSO_{4\hspace{1 mm}(s)}

Now we will calculate the theoretical yield of each reactant.

300\hspace{1 mm}mL\times\frac{1 L}{1000 mL}\times \frac{0.3\hspace{1 mm}moles\hspace{1 mm}Na_2SO_4}{1 L}\times\frac{1\hspace{1 mm}mole\hspace{1 mm}BaSO_4}{1\hspace{1 mm}mole\hspace{1 mm}Na_2SO_4}\times \frac{233.4\hspace{1 mm}g\hspace{1 mm}BaSO_4}{1\hspace{1 mm}mole\hspace{1 mm}BaSO_4}=21.0\hspace{1 mm}g\hspace{1 mm}BaSO_4\displaystyle 300\hspace{1 mm}mL\times\frac{1 L}{1000 mL}\times \frac{0.3\hspace{1 mm}moles\hspace{1 mm}Na_2SO_4}{1 L}\times\frac{1\hspace{1 mm}mole\hspace{1 mm}BaSO_4}{1\hspace{1 mm}mole\hspace{1 mm}Na_2SO_4}\times \frac{233.4\hspace{1 mm}g\hspace{1 mm}BaSO_4}{1\hspace{1 mm}mole\hspace{1 mm}BaSO_4}=21.0\hspace{1 mm}g\hspace{1 mm}BaSO_4

Now we perform the same calculation beginning with BaCl_2\displaystyle BaCl_2:

200\hspace{1 mm}mL\times\frac{1\hspace{1 mm}L}{1000\hspace{1 mm}mL}\times\frac{0.4\hspace{1 mm}moles\hspace{1 mm}BaCl_2}{1\hspace{1 mm}L}\times\frac{1\hspace{1 mm}mole\hspace{1 mm}BaSO_4}{1\hspace{1 mm}mole\hspace{1 mm}BaCl_2}\times\frac{233.4\hspace{1 mm}g\hspace{1 mm}BaSO_4}{1\hspace{1 mm}mole\hspace{1 mm}BaSO_4}=18.7\hspace{1 mm}g\hspace{1 mm}BaSO_4\displaystyle 200\hspace{1 mm}mL\times\frac{1\hspace{1 mm}L}{1000\hspace{1 mm}mL}\times\frac{0.4\hspace{1 mm}moles\hspace{1 mm}BaCl_2}{1\hspace{1 mm}L}\times\frac{1\hspace{1 mm}mole\hspace{1 mm}BaSO_4}{1\hspace{1 mm}mole\hspace{1 mm}BaCl_2}\times\frac{233.4\hspace{1 mm}g\hspace{1 mm}BaSO_4}{1\hspace{1 mm}mole\hspace{1 mm}BaSO_4}=18.7\hspace{1 mm}g\hspace{1 mm}BaSO_4

The limiting reagent is BaCl_2\displaystyle BaCl_2 and this reaction produces 18.7 g precipitate.

Example Question #391 : Ap Chemistry

A chemist boils off the water from 234 mL of a 0.4 M solution of KCl. What is the mass of the remaining solid?

Possible Answers:

6.98\hspace{1 mm}g\hspace{1 mm}KCl\displaystyle 6.98\hspace{1 mm}g\hspace{1 mm}KCl

74.55\hspace{1 mm}g\hspace{1 mm}KCl\displaystyle 74.55\hspace{1 mm}g\hspace{1 mm}KCl

234\hspace{1 mm}g\hspace{1 mm}KCl\displaystyle 234\hspace{1 mm}g\hspace{1 mm}KCl

29.82\hspace{1 mm}g\hspace{1 mm}KCl\displaystyle 29.82\hspace{1 mm}g\hspace{1 mm}KCl

None of the available answers

Correct answer:

6.98\hspace{1 mm}g\hspace{1 mm}KCl\displaystyle 6.98\hspace{1 mm}g\hspace{1 mm}KCl

Explanation:

234\hspace{1 mm}mL\times\frac{1\hspace{1 mm}L}{1000\hspace{1 mm}mL}\times\frac{0.4\hspace{1 mm}moles\hspace{1 mm}KCl}{1\hspace{1 mm}L}\times\frac{74.55\hspace{1 mm}g\hspace{1 mm}KCl}{1\hspace{1 mm}mole\hspace{1 mm}KCl}=6.98\hspace{1 mm}g\hspace{1 mm}KCl\displaystyle 234\hspace{1 mm}mL\times\frac{1\hspace{1 mm}L}{1000\hspace{1 mm}mL}\times\frac{0.4\hspace{1 mm}moles\hspace{1 mm}KCl}{1\hspace{1 mm}L}\times\frac{74.55\hspace{1 mm}g\hspace{1 mm}KCl}{1\hspace{1 mm}mole\hspace{1 mm}KCl}=6.98\hspace{1 mm}g\hspace{1 mm}KCl

Example Question #1 : Precipitates And Calculations

A chemist boils off 344 mL of a 0.35 M solution of sodium hydroxide. How much solid remains?

Possible Answers:

No solid will remain as it will boil off with the water

\displaystyle 13.9\hspace{1 mm}g\hspace{1 mm}NaOH

\displaystyle 4.67\hspace{1 mm}g\hspace{1 mm}NaOH

None of the available answers

\displaystyle 4.82\hspace{1 mm}g\hspace{1 mm}NaOH

Correct answer:

\displaystyle 4.82\hspace{1 mm}g\hspace{1 mm}NaOH

Explanation:

First, you must recognize that the chemical formula for sodium hydroxide is \displaystyle NaOH. The mass of the boiled solution is

\displaystyle 344\hspace{1 mm}mL\times\frac{0.35\hspace{1 mm}mol\hspace{1 mm}NaOH}{1000\hspace{1 mm}mL}\times\frac{39.997\hspace{1 mm}g\hspace{1 mm}NaOH}{1\hspace{1 mm}mol\hspace{1 mm}NaOH}= 4.82\hspace{1 mm}g\hspace{1 mm}NaOH

Example Question #2 : Precipitates And Calculations

What is the mass of the solid left over after boiling off 100mL of 0.4M NaCl solution?

Possible Answers:

\displaystyle 0.0445g

\displaystyle 0.04g

\displaystyle 2.35g

\displaystyle 2.34g

None of the available answers

Correct answer:

\displaystyle 2.34g

Explanation:

The remaining mass with be equal to the mass of the sodium chloride in the solution. Once the solvent (water) evaporates, the solute will remain.

Atomic mass of sodium is ~23. Atomic mass of chlorine is ~35.5. Molecular mass of NaCl is ~58.5.

\displaystyle 0.100L*\frac{0.4mol}{1L}=0.040mol\ NaCl

\displaystyle 0.040mol\ NaCl*\frac{58.5g\ NaCl}{1mol\ NaCl}=2.34g\ NaCl

Example Question #33 : Solutions

A chemist has 5.2L of a 0.3M Li_3 PO_4\displaystyle Li_3 PO_4 solution. If the solvent were boiled off, what would be the mass of the remaining solid?

Possible Answers:

\displaystyle 116g\ Li_3PO_4

\displaystyle 108g\ Li_3PO_4

\displaystyle 53.9g\ Li_3PO_4

\displaystyle 1.56g\ Li_3PO_4

\displaystyle 181g\ Li_3PO_4

Correct answer:

\displaystyle 181g\ Li_3PO_4

Explanation:

First we will figure out the number of moles of Li_3 PO_4\displaystyle Li_3 PO_4 that we have. We have 5.2 L of a 0.3 M solution, so:

0.3\hspace{1mm} \frac{mol}{L} \times 5.2\hspace{1 mm} L = 1.56 \hspace{1 mm}moles\displaystyle 0.3\hspace{1mm} \frac{mol}{L} \times 5.2\hspace{1 mm} L = 1.56 \hspace{1 mm}moles

Now the problem is to find the mass of 1.56 moles of Li_3 PO_4\displaystyle Li_3 PO_4. First, we need to know the molecular weight of Li_3 PO_4\displaystyle Li_3 PO_4. We will go to the periodic table and add up the mass of each element present.

 

(3\hspace{1 mm}\times6.94\hspace{1 mm}\frac{grams\hspace{1 mm} Li}{mol\hspace{1 mm}Li})+30.97\hspace{1 mm}\frac{grams\hspace{1 mm}P}{mol\hspace{1 mm}P}+(4\hspace{1 mm}\times 16\hspace{1 mm}\frac{grams\hspace{1 mm}O}{mol\hspace{1mm}O})= 115.79\hspace{1mm}\frac{grams\hspace{1 mm} Li_3 PO_4}{mol\hspace{1 mm}Li_3 PO_4}\displaystyle (3\hspace{1 mm}\times6.94\hspace{1 mm}\frac{grams\hspace{1 mm} Li}{mol\hspace{1 mm}Li})+30.97\hspace{1 mm}\frac{grams\hspace{1 mm}P}{mol\hspace{1 mm}P}+(4\hspace{1 mm}\times 16\hspace{1 mm}\frac{grams\hspace{1 mm}O}{mol\hspace{1mm}O})= 115.79\hspace{1mm}\frac{grams\hspace{1 mm} Li_3 PO_4}{mol\hspace{1 mm}Li_3 PO_4}

Now the problem is simple as we have the molar mass and the number of desired moles.

 

115.79\hspace{1 mm}\frac{grams\hspace{1 mm}Li_3 PO_4}{mol\hspace{1 mm}Li_3 PO_4}\times1.56\hspace{1 mm}moles\hspace{1 mm}Li_3 PO_4 = 181\hspace{1 mm}grams\hspace{1 mm}Li_3 PO_4\displaystyle 115.79\hspace{1 mm}\frac{grams\hspace{1 mm}Li_3 PO_4}{mol\hspace{1 mm}Li_3 PO_4}\times1.56\hspace{1 mm}moles\hspace{1 mm}Li_3 PO_4 = 181\hspace{1 mm}grams\hspace{1 mm}Li_3 PO_4

Example Question #2 : Precipitates And Calculations

Given a pKof 6.37 for the first deprotonation of carbonic acid (\displaystyle H_2CO_3), what is the ratio of bicarbonate (\displaystyle HCO_3^-) to carbonic acid (\displaystyle H_2CO_3) at pH 5.60?

Assume that the effect of the deprotonation of bicarbonate is negligible in your calculations.

Possible Answers:

\displaystyle 0.170

\displaystyle 1.07 * 10^{-12}

\displaystyle 5.89

\displaystyle 9.33 * 10^{11}

Correct answer:

\displaystyle 0.170

Explanation:

Use the Henderson-Hasselbalch equation to determine the ratio of bicarbonate to carbonic acid in solution:

\displaystyle pH = pK_a + \log\frac{\left [A^- \right ]}{\left [HA \right ]}

\displaystyle pH = pK_a + \log\frac{[HCO_3^-]}{[H_2CO_3]}

\displaystyle 5.60-6.37 = -0.77 = \log\frac{\left [HCO_3^- \right ]}{\left [H_2CO_3 \right ]}

Solve for the ratio we need to answer the question:

\displaystyle 10^{-0.77} = \frac{\left [ HCO_3^-\right ]}{[H_2CO_3]} = 0.170

Learning Tools by Varsity Tutors