AP Chemistry : Elements and Atoms

Study concepts, example questions & explanations for AP Chemistry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #32 : Periodic Trends

Where are the largest neutral atoms found on the periodic table?

Possible Answers:

Top right

Bottom left

Top left

Bottom right

Correct answer:

Bottom left

Explanation:

From left to right on the periodic table, atomic radius decreases because the number of protons increase while electrons are being added to the same shell; the attraction between the nucleus and the electron cloud override the shielding effect of adding electrons to the same shell. Therefore, those on the left are larger. From top to bottom on the periodic table, atomic radius/size increases because electrons are added to new valence shells significantly further from the nucleus than the previous shell. Therefore, those on the bottom left are largest.

Example Question #31 : Periodic Trends

Which atom has a smaller atomic radius than oxygen?

Possible Answers:

Sulfur

Lithium

Nitrogen

Fluorine

Correct answer:

Fluorine

Explanation:

From left to right on the periodic table, atomic radius decreases because the number of protons increase while electrons are being added to the same shell; the attraction between the nucleus and the electron cloud override the shielding effect of adding electrons to the same shell. Therefore, those on the left are larger. From top to bottom on the periodic table, atomic radius/size increases because electrons are added to new valence shells significantly further from the nucleus than the previous shell. Therefore, those on the bottom left are largest. Sulfur is the largest since it is in period 3. The remaining atoms are in period 2, with lithium being the largest, followed by nitrogen, oxygen, and fluorine.

Example Question #31 : Periodic Trends

An atom in which of the following groups is most likely to lose an electron?

Possible Answers:

Alkali metals

Noble gases

Halogens

Alkaline earth metals

Correct answer:

Alkali metals

Explanation:

The tendency to lose an electron is related to ionization energy, which is principally the opposite of electronegativity. The higher the ionization energy, the harder it is to pull an electron from the atom (takes more energy to ionize). Elements on the right side of the periodic table have higher ionization energies because they tend to gain electrons to achieve a full valence electron shell rather than lose them. Elements on the left side of the periodic table have lower ionization energies because they tend to lose electrons in their valence shell to achieve a full shell. Alkali metals need to lose 1 electron to achieve noble gas electron configuration, whereas the first electron lost from an alkaline earth metal does not confer this stability.

Example Question #1 : Special Groups

Why are atomic halogens relatively reactive?

Possible Answers:

None of the available answers

Gaseous halogens are very stable

Halogens are monovalent anions, so they are very reactive

Halogens have an unpaired electron in their valence shell and they only need one more electron to obtain an octet

The valence shell of halogens has diradical character

Correct answer:

Halogens have an unpaired electron in their valence shell and they only need one more electron to obtain an octet

Explanation:

Halogens have seven electrons in their valence shell, so they only need one more electron to obtain a completely filled valence shell. In addition, the unpaired electron in the seven electron shell is a radical which is highly reactive.

Example Question #1 : Special Groups

Which of the following is not a property of the noble gases?

Possible Answers:

Noble gases have low boiling points

Noble gases have low melting points

Noble gases have weak interatomic forces

All noble gases are monoatomic under standard conditions

Noble gases are stable because of their complete octet, so they cannot take place in any reaction

Correct answer:

Noble gases are stable because of their complete octet, so they cannot take place in any reaction

Explanation:

While noble gases are very stable due to their filled octet, they actually do take place in certain reactions, so that is not a property of noble gases. All other answer choices are true.

Example Question #2 : Special Groups

Refer to Figure 1 for questions 1-6.

Below are the data for ionization energies of three elements X, Y, and Z. These elements are on the third peroid of the periodic table. The first four ionization energies for elements X, Y, and Z are given below in values of kJ/mol.

Figure 1: Ionization energies in kJ/mol for selected elements.

Which of the unknown elements would you expect to share chemical properties with strontium (Sr)?

Possible Answers:

Y and Z

Z

X and Y

X

Y

Correct answer:

Z

Explanation:

We know that element Z is magnesium due to its jump bwtween ionization energies 2 and 3. Magnesium is in the second group of the periodic table and shares similar chemical properties with other alkali earth metals, such as strontium.

Example Question #3 : Special Groups

The periodic table of elements is organized in order of atomic number, whic describes how many protons are found in the atom's nucleus. The position of the element in the periodic table can also yield insight into how that atom will respond to other atoms and how it will participate in a chemical reaction.

Sodium is found in the alkali metal group on the periodic table. What type of ion would you expect sodium to form in order to achieve a stable octet?

Possible Answers:

A cation, with a charge of +1

A cation, with a neutral charge

An anion, with a charge of -1

An anion, with a charge of +1

A cation, with a charge of -1

Correct answer:

A cation, with a charge of +1

Explanation:

Sodium is an alkali metal. All alkali metals are found in group 1 on the periodic table, and lose 1 electron in order to achieve a stable octet. Any ion that loses an electron, and thus becomes positively charged, is referred to as a cation. Anions are negatively charged ions, so sodium is not going to become an anion.

 

 

Example Question #3 : Special Groups

Below are the data for ionization energies of three elements X, Y, and Z. These elements are on the third peroid of the periodic table. The first four ionization energies for elements X, Y, and Z are given below in values of kJ/mol.

Figure 1: Ionization energies in kJ/mol for selected elements.

Which element(s) react(s) violently with water?

Possible Answers:

X and Y

X

Y and Z

Y

Z

Correct answer:

X

Explanation:

We know element X is sodium due to its discrepancy between IE1 and IE2. Sodium has one valence electron and is an alkali metal. Pure alkali metals react violently with water. The heavier the metal, the bigger the explosion. 

Example Question #71 : Elements And Atoms

What kind of radiation has no charge or mass?

Possible Answers:

delta

gamma

alpha

beta

Correct answer:

gamma

Explanation:

This is the definition of gamma radiation.

Example Question #581 : High School Chemistry

Consider the following isotope of thorium:

What is the identity of the product following three alpha decay reactions?

Possible Answers:

Correct answer:

Explanation:

During alpha decay, an element emits a helium nucleus with 2 neutrons and 2 protons. Thus, the atomic mass of the new element is decreased by four, and the atomic number is decreased by two.

Three subsequent alpha decays result in a new element with an atomic mass of 232 - 3(4) = 220, and a new atomic number of 90 - 3(2) = 84.

Using the periodic table, we find the element with this atomic number is polonium (Po).

Learning Tools by Varsity Tutors