AP Calculus BC : Taylor Series

Study concepts, example questions & explanations for AP Calculus BC

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Alternating Series

Find the interval of convergence of  for the series .

Possible Answers:

Correct answer:

Explanation:

Using the root test, 

Because 0 is always less than 1, the root test shows that the series converges for any value of x. 

Therefore, the interval of convergence is:

Example Question #1 : Taylor And Maclaurin Series

Find the interval of convergence for  of the Taylor Series .

Possible Answers:

Correct answer:

Explanation:

Using the root test

 

and

. T

herefore, the series only converges when it is equal to zero.

This occurs when x=5.

Example Question #1 : Abstract Algebra

Let  be the fifth-degree Taylor polynomial approximation for , centered at .

What is the Lagrange error of the polynomial approximation to ?

Possible Answers:

Correct answer:

Explanation:

The fifth degree Taylor polynomial approximating  centered at  is: 

The Lagrange error is the absolute value of the next term in the sequence, which is equal to .

We need only evaluate this at  and thus we obtain 

Learning Tools by Varsity Tutors