AP Calculus BC : Fundamental Theorem of Calculus and Techniques of Antidifferentiation

Study concepts, example questions & explanations for AP Calculus BC

varsity tutors app store varsity tutors android store

Example Questions

Example Question #51 : Integrals

Evaluate the following integral

Possible Answers:

Correct answer:

Explanation:

Evaluate the following integral

Let's begin by recalling our "reverse power rule" AKA, the antiderivative form of our power rule.

In other words, all we need to do for each term is increase the exponent by 1 and then divide by that number.

Let's clean it up a little to get:

Now, to evaluate our integral, we need to plug in 5 and 0 for x and find the difference between the values. In other words, if our integrated function is F(x), we need to find F(5)-F(0).

Let's start with F(5)

Next, let's look at F(0). If you look at our function carefully, you will notice that F(0) will cancel out all of our terms except for +c. So, we have the following:

Finding the difference cancels out the c's and leaves us with 185.

Example Question #1 : Improper Integrals

Evaluate:

Possible Answers:

Correct answer:

Explanation:

First, we will find the indefinite integral using integration by parts.

We will let  and .

Then  and .

 

 

To find , we use another integration by parts:

, which means that , and 

, which means that, again, .

 

 

Since 

 , or,

for all real , and 

,

by the Squeeze Theorem, 

.

 

  

Example Question #12 : Fundamental Theorem Of Calculus And Techniques Of Antidifferentiation

Evaluate:

Possible Answers:

The integral does not converge

Correct answer:

Explanation:

First, we will find the indefinite integral, .

We will let  and .

Then,

 and .

and 

Now, this expression evaluated at is equal to

.

At it is undefined, because does not exist.

We can use L'Hospital's rule to find its limit as , as follows:

and , so by L'Hospital's rule,

Therefore, 

Example Question #1 : Improper Integrals

Evaluate:

Possible Answers:

Correct answer:

Explanation:

Rewrite the integral as 

.

Substitute . Then 

 and . The lower bound of integration stays , and the upper bound becomes , so

Since , the above is equal to

.

Example Question #1 : Improper Integrals

Evaluate .

Possible Answers:

Correct answer:

Explanation:

By the Formula Rule, we know that . We therefore know that .

Continuing the calculation:

By the Power Rule for Integrals,  for all  with an arbitrary constant of integration . Therefore:

.

So, 

.

 

Example Question #61 : Integrals

Possible Answers:

Correct answer:

Explanation:

In order to evaluate this integral, we will need to use partial fraction decomposition.

Multiply both sides of the equation by the common denominator, which is

This means that  must equal 1, and

The answer is .

Example Question #2 : Substitution Of Variables (By Parts And Simple Partial Fractions)

Integrate:

Possible Answers:

Correct answer:

Explanation:

To integrate, we must first make the following substitution:

Rewriting the integral in terms of u and integrating, we get

The following rule was used to integrate:

Finally, we replace u with our original x term:

Learning Tools by Varsity Tutors