All AP Calculus BC Resources
Example Questions
Example Question #181 : Derivatives
A particle moves around the xy plane such that its position as a function of time is given by the parametric function:
.
What is the slope, , of the particle's trajectory when ?
Evaluate the slope as
.
We have
and
so
Evaluating this when gives
.
Remark: This curve is one example from family of curves called Lissajous figures, which can be observed on oscilloscopes.
Example Question #1 : First And Second Derivatives Of Functions
The position of a car is given by the following function:
What is the velocity function of the car?
The velocity function of the car is equal to the first derivative of the position function of the car, and is equal to
The derivative was found using the following rules:
, , ,
Example Question #1 : Velocity, Speed, Acceleration
Let
Find the first and second derivative of the function.
In order to solve for the first and second derivative, we must use the chain rule.
The chain rule states that if
and
then the derivative is
In order to find the first derviative of the function
we set
and
Because the derivative of the exponential function is the exponential function itself, we get
And differentiating we use the power rule which states
As such
And so
To solve for the second derivative we set
and
Because the derivative of the exponential function is the exponential function itself, we get
And differentiating we use the power rule which states
As such
And so the second derivative becomes
Example Question #2 : Velocity, Speed, Acceleration
Find the velocity function of the particle if its position is given by the following function:
The velocity function is given by the first derivative of the position function:
and was found using the following rules:
, , ,
Example Question #3 : Velocity, Speed, Acceleration
Find the first and second derivatives of the function
We must find the first and second derivatives.
We use the properties that
- The derivative of is
- The derivative of is
As such
To find the second derivative we differentiate again and use the product rule which states
Setting
and
we find that
As such
Example Question #3 : Velocity, Speed, Acceleration
Given the velocity function
where is real number such that , find the acceleration function
.
We can find the acceleration function from the velocity function by taking the derivative:
We can view the function
as the composition of the following functions
so that . This means we use the chain rule
to find the derivative. We have and , so we have
Example Question #1 : Velocity, Speed, Acceleration
The position of an object is given by the equation . What is its acceleration at t = 2?
If this function gives the position, the first derivative will give its speed and the second derivative will give its acceleration.
Now plug in 2 for t:
Example Question #6 : Velocity, Speed, Acceleration
The equation models the position of an object after t seconds. What is the acceleration at 3 seconds?
If this function gives the position, the first derivative will give its speed and the second derivative will give its acceleration.
Plug in 3 for t:
Example Question #1 : Velocity, Speed, Acceleration
The equation models the position of an object after t seconds. What is its speed after seconds?
If this function gives the position, the first derivative will give its speed.
Plug in for t:
Example Question #2 : Velocity, Speed, Acceleration
The position of an object is modeled by the equation What is the speed after seconds?
If this function gives the position, the first derivative will give its speed. To differentiate, use the chain rule: . In this case, and . Since and , the first derivative is .
Plug in for t:
Certified Tutor
Certified Tutor