AP Calculus AB : Computation of the Derivative

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #71 : Derivatives Of Functions

Find the derivative of the function:


Possible Answers:

None of the other derivatives are correct

Correct answer:

Explanation:

We are given the function:

To take the derivative of this, we must understand 3 things:

  1. The product rule for derivatives
  2. The derivative of the sin function
  3. The derivative of the tan function

 

We can apply the product rule as follows: 

 

Simplifying once more, the answer becomes:

 

 

(Note: If you require or desire further explanation for the assumed knowledge, ask your Varsity Tutor for clarity on the concepts!)

Example Question #88 : Ap Calculus Ab

Find the first derivative of the function:

 

Possible Answers:

Correct answer:

Explanation:

We are given the function:

Our first step in tackling this problem is to apply the product rule for derivatives:

To simplify the above further, it is best to write everything in terms of sin and cos, like so:

We can simplify both sides by multiplying the components together and canceling out like so:

Simplifying our last terms, we arrive at the correct answer:

Example Question #72 : Derivatives Of Functions

Find the limit of the function below using  L'Hôpital's rule

 

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                    STEPS

*****************************************************************

First, try to plug in the 2, and check the result.

When doing this, the limit becomes an indeterminate form of 

Thus, we continue with L'Hôpital's rule, deriving the expressions in the numerator and denominator like so:

Now, plug 2 in for y, to check again

Thus, our correct answer is:

*****************************************************************

                                               CORRECT ANSWER

*****************************************************************

Example Question #73 : Derivatives Of Functions

Find the limit of the function below using L'Hopital's Rule

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                   STEPS

*****************************************************************

We are asked to find the limit:

 

First, plug pi in for s to check if we can use L'Hopital's Rule

We have the indeterminate form zero over zero, so we continue with L'Hopital's Rule, deriving the expressions in the numerator and denominator, independently of each other:

 (The 3 before the cos is from the derivative of 3s (=3)

 

Now, plug pi in once more to check:

Thus, canceling the negatives, we arrive at the correct answer:

*****************************************************************

                                          CORRECT ANSWER

*****************************************************************

Example Question #74 : Derivatives Of Functions

Find the limit of the function below using L'Hopital's rule

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                        STEPS

*****************************************************************

Given:

Plug in 4 for q to test to use L'Hopital's rule

From this indeterminate form, realize we can now use L'Hopital's rule, deriving the expressions in the numerator and denominator independently of one another

 (pi comes from chain rule with qpi)

Thus, we arrive at our correct answer:

*****************************************************************

                                              CORRECT ANSWER

*****************************************************************

Example Question #75 : Derivatives Of Functions

Find the derivative of the function:

 

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                      STEPS

*****************************************************************

Given:

Understand the derivative of a^x:

Thus:

We find the chain by deriving the compound operation "2r"

Plug 2 in for the chain:

Thus, we arrive at the correct answer:

*****************************************************************

                                             CORRECT ANSWER

*****************************************************************

Example Question #76 : Derivatives Of Functions

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                    STEPS

*****************************************************************

Given:

Now, take the derivative of x^2, and plug in for the "chain"

Multiplying, we arrive at the correct answer

*****************************************************************

                                          CORRECT ANSWER

*****************************************************************

Example Question #77 : Derivatives Of Functions

Find the limit of the function below using L'Hopital's Rule

Possible Answers:

The limit does not exist

Correct answer:

Explanation:

*****************************************************************

                                                       STEPS

*****************************************************************

Given:

Try the limit. Plug in two for y and check the result:

Thus, we realize me must use L'Hopital's Rule on the original quotient, deriving the expressions in the numerator and denominator independently

Try the limit once more:

Simplifying the numerator, we arrive at the correct answer:

*****************************************************************

                                            CORRECT ANSWER

*****************************************************************

Example Question #78 : Derivatives Of Functions

Find the derivative of the function

,

where  is a constant.

Possible Answers:

Correct answer:

Explanation:

The derivative of the function is equal to

and was found using the following rules:

Example Question #96 : Derivatives

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

The derivative of the function is equal to

and was found using the following rules:

Learning Tools by Varsity Tutors