AP Calculus AB : Computation of the Derivative

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #457 : Derivatives

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                     STEPS

*****************************************************************

 Given:

Set the derivative up with the quotient rule:

Multiply factors:

Combine like terms:

Factoring out 8x in the numerator, we arrive at the correct answer:

*****************************************************************

                                                   ANSWER

*****************************************************************

Example Question #458 : Derivatives

Find the derivative of the function:

Simplify your final answer through factoring terms out 

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                     STEPS

*****************************************************************

 Given:

Set up a product rule for the derivative of the second term:

Plug this new-found product in for ,

Multiply the negative across:

 Factor out a common factor of s, and we reach the correct answer:

*****************************************************************

                                                  ANSWER

*****************************************************************

Example Question #459 : Derivatives

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                      STEPS

*****************************************************************

 Given:

We can avoid the product rule by factoring the constants out before derivation:

 

Taking the derivative of the secant function, we arrive at the answer: 

*****************************************************************

                                                   ANSWER

*****************************************************************

Example Question #81 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                   STEPS

*****************************************************************

 Given:

Establish the derivative using the product rule:

Distribute y terms 

Note and factor out the greatest common factor, y^3 to get the answer:

*****************************************************************

                                                 ANSWER

*****************************************************************

Example Question #82 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                     STEPS

*****************************************************************

 Given:

We can circumvent having to use the product rule by factoring out the constants before deriving the functions, like so:

Now, we simply derive the trigonometric functions:

Multiplying the negatives, we arrive at the correct answer:

*****************************************************************

                                                   ANSWER

*****************************************************************

Example Question #83 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                    STEPS

*****************************************************************

 Given:

Set up the product rule:

Factor out a greatest common factor -csc(y), and we reach the answer:

*****************************************************************

                                                  ANSWER

*****************************************************************

Example Question #84 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the function:

 

Hint: Try to re-arrange the function first, and you can reach the answer faster and easier!

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                     STEPS

*****************************************************************

 Given:

With a little bit of re-arranging the problem, we can circumvent the quotient rule entirely

Substituting in tangent, we get

We can now derive

If we apply the general product rule, and remember to use the chain rule, we get:

We can find our chained term by deriving tangent:

Plug this result into our chain and we arrive at the correct answer:

*****************************************************************

                                                  ANSWER

*****************************************************************

 

Example Question #85 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                     STEPS

*****************************************************************

 Given:

Understand the derivative of the exponential:

To obtain the chained term, we must derive the compound function element, in this case, the cos function contained in the exponent

Plug the -sin back in:

Pull the sin to the front, and we arrive at the correct answer:

*****************************************************************

                                                   ANSWER

*****************************************************************

Example Question #86 : Derivative Rules For Sums, Products, And Quotients Of Functions

Calculate the derivative of .

Possible Answers:

Correct answer:

Explanation:

We don't have a formula for taking the derivative of this expression, so we'll have to use the quotient rule, since we have a fraction of functions.

The quotient rule is .

Applying it to , we get

Our answer is .

Example Question #87 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of .

Possible Answers:

Correct answer:

Explanation:

Using the product rule, , the derivative of is

Final answer:

Learning Tools by Varsity Tutors