AP Calculus AB : Chain rule and implicit differentiation

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #142 : Computation Of The Derivative

Find \displaystyle \frac{\mathrm{d}y }{\mathrm{d} x} of the following equation:

\displaystyle x^2y+y^2=x

 

Possible Answers:

\displaystyle 2xy+2y-1

\displaystyle \frac{1+2x}{2y-x^2}

\displaystyle \frac{1-2x}{2y+x^2}

\displaystyle \frac{1+2x}{2y+x^2}

\displaystyle x^2+2y

Correct answer:

\displaystyle \frac{1-2x}{2y+x^2}

Explanation:

To find \displaystyle \frac{\mathrm{d}y }{\mathrm{d} x} we must use implicit differentiation, which is an application of the chain rule.

Taking \displaystyle \frac{\mathrm{d} }{\mathrm{d} x} of both sides of the equation, we get

\displaystyle 2x+x^2\frac{\mathrm{d} y}{\mathrm{d} x}+2y\frac{\mathrm{d} y}{\mathrm{d} x}=1

using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(g(x))=f'(g(x))\cdot g'(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(x)g(x)=f'(x)g(x)+f(x)g'(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}ax=a

Note that for every derivative of a function with y, the additional term \displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} appears; this is because of the chain rule, where \displaystyle y = g(x), so to speak, for the function it appears in. 

Using algebra to rearrange, we get

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{1-2x}{2y+x^2}

 

Example Question #51 : Chain Rule And Implicit Differentiation

Find the derivative:

Possible Answers:

\displaystyle \frac{x\sec^2(x^2)\sqrt{e^{\tan(x^2)}}}{2}

\displaystyle \frac{2x\sec^2(x^2)}{\sqrt{e^{\tan^{(x^2)}}}}

\displaystyle \frac{x\sec^2(x^2)}{\sqrt{e^{\tan^{(x^2)}}}}

Correct answer:

Explanation:

The derivative of the function is equal to

and was found using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(g(x))=f'(g(x))\cdot g'(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^u=e^u\frac{\mathrm{d} u}{\mathrm{d} x}\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \tan(x)=\sec^2(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}

Before simplification, the derivative we get is

\displaystyle f'(x)=\frac{e^{\tan(x^2)^{-\frac{1}{2}}}}{2}(2x\sec^2(x^2)e^{\tan(x^2)})

Note that the square root, the exponential, and the tangent function all utilize chain rule when taking their derivatives. 

Example Question #51 : Chain Rule And Implicit Differentiation

Find the first derivative of the following function:

\displaystyle f=\cos(e^{2x})

Possible Answers:

\displaystyle -e^{2x}\sin(e^{2x})

\displaystyle -\sin(e^{2x})

\displaystyle -2e^{2x}\sin(e^{2x})

\displaystyle 2e^{2x}\sin(e^{2x})

\displaystyle 0

Correct answer:

\displaystyle -2e^{2x}\sin(e^{2x})

Explanation:

The derivative of the function is equal to

\displaystyle f'=-2e^{2x}\sin(e^{2x})

and was found using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(g(x))=f'(g(x))\cdot g'(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \cos(x)=-\sin(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^x=e^x\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a

Note that the first rule - the chain rule - was used three times for the function: the cosine, contained the exponential which itself was raised to a function. (Note that sometimes the exponential rule is written as \displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^u=e^u \frac{\mathrm{d} u}{\mathrm{d} x}, which itself is the chain rule.)

Example Question #142 : Computation Of The Derivative

A reaction is modeled by the following equation:

\displaystyle \kappa (T)=Ae^{\frac{-R}{T}}

where \displaystyle A, R are constants.

What is \displaystyle \kappa '?

Possible Answers:

\displaystyle 0

\displaystyle \frac{AR}{T}e^{-\frac{R}{T}}

\displaystyle \frac{AR}{T^2}e^{-\frac{R}{T}}

\displaystyle -\frac{AR}{T^2}e^{-\frac{R}{T}}

Correct answer:

\displaystyle \frac{AR}{T^2}e^{-\frac{R}{T}}

Explanation:

The derivative of the function is equal to

\displaystyle \kappa'(T)=\frac{AR}{T^2}e^{-\frac{R}{T}}

and was found using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(g(x))=f'(g(x))\cdot g'(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^x=e^x\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}

The chain rule was used for the function contained in the exponential function (or, as written as a rule, \displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^u=e^u \frac{\mathrm{d} u}{\mathrm{d} x}).

Example Question #141 : Computation Of The Derivative

For the equation, \displaystyle y^2 + 2x^2y - \frac{5x}{y} = 2, find \displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}.

Possible Answers:

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{5y^3 - 4xy^3}{2y^4 + 2x^2y^2 + 5x}

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} =0

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{4xy^3 - 5y}{2y^4 + 2x^2y^2 + 5x}

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{ - 4xy^3 + 5y}{2y^3 + 2x^2y^2 +5x}

Correct answer:

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{ - 4xy^3 + 5y}{2y^3 + 2x^2y^2 +5x}

Explanation:

The equation given is not written and \displaystyle y = f(x). Instead, it is written with \displaystyle y's and \displaystyle x's on the same side of the equation. This suggests we should try implicit differentiation, which means find the derivative of both sides with respect to \displaystyle x.

"With respect to \displaystyle x" means that we treat every other variable as a function of \displaystyle x. So \displaystyle y = f(x), and the derivative of \displaystyle y is a chain rule. This will be emphasized later in the explanation.

First we must differentiate both sides with respect to \displaystyle x.

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}[y^2 + 2x^2y - \frac{5x}{y}] = \frac{\mathrm{d} }{\mathrm{d} x}[2]

We have multiple terms on the left hand side, so we will differentiate each term individually.

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}[y^2] + \frac{\mathrm{d} }{\mathrm{d} x}[2x^2y] + \frac{\mathrm{d} }{\mathrm{d} x}[\frac{-5x}{y}] = \frac{\mathrm{d} }{\mathrm{d} x}[2]

For the first term, \displaystyle \frac{\mathrm{d} }{\mathrm{d} x}[y^2], we will use the power rule and also use the chain rule, since we must assume that \displaystyle y = f(x).

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}[y^2]

\displaystyle {\color{Blue} 2[y]^{2-1}}{\color{DarkRed} (\frac{\mathrm{d} y}{\mathrm{d} x})}

 

The blue part is the power rule. The red is from the chain rule. The red part is the derivative of y with respect to x, which is currently unknown. Remember that y is some unknown function of x, whose derivative is also unknown. We can only write \displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} for the derivative of y.

Now we find the second term's derivative,

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}[{\color{Blue} 2x^2}{\color{DarkRed} y}]

This is a product rule. To help with the product rule, the two pieces are color coded. Remember that the power rule is \displaystyle \frac{\mathrm{d} }{\mathrm{d} x}[{\color{Blue} f(x)}\cdot{\color{DarkRed} g(x)}] ={\color{Blue} f(x)}\cdot {\color{DarkRed} g'(x)} + {\color{Blue} f'(x)} \cdot {\color{DarkRed} g(x)}

Applying this, we get

\displaystyle {\color{Blue} (2x^2)}{\color{DarkRed} (\frac{\mathrm{d} y}{\mathrm{d} x})} + {\color{Blue} (4x)}{\color{DarkRed} (y)}

Simplifying gives us

\displaystyle 2x^2 \cdot \frac{\mathrm{d} y}{\mathrm{d} x} + 4xy

For the third term, \displaystyle \frac{-5x}{y}, we will algebraically rewrite it as \displaystyle -5xy^{-1}, so we can apply the product rule instead of the quotient rule. This is just a personal preference, The quotient rule would work as well.

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}[{\color{Blue} -5x}{\color{DarkRed} y^{-1}}]

\displaystyle {\color{Blue} (-5x)}{\color{DarkRed} (-1y^{-1-1})(\frac{\mathrm{d} y}{\mathrm{d} x})} + {\color{Blue} (-5)}{\color{DarkRed} (y^{-1})}

remember that the derivative of \displaystyle {\color{DarkRed} y^{-1}} with respect to \displaystyle x requires the chain rule, resulting in the \displaystyle {\color{DarkRed} (\frac{\mathrm{d} y}{\mathrm{d} x})}.Simplifying gives us

\displaystyle 5xy^{-2}\frac{\mathrm{d} y}{\mathrm{d} x} - 5y^{-1}

The right hand side of the equation is a constant, so its derivative is zero.

Assembling all the parts back together, we have

\displaystyle 2y\frac{\mathrm{d} y}{\mathrm{d} x} + 2x^2\frac{\mathrm{d} y}{\mathrm{d} x} + 4xy + 5xy^{-2}\frac{\mathrm{d} y}{\mathrm{d} x} - 5y^{-1 }=0

Now that we have differentiated the equation, we need to algebraically solve for \displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}.

First, we should move all terms with a \displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} to one side, which in this case is already done. Then we should move all terms without a \displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} to the opposite side of the equation. Doing so, we get

\displaystyle 2y\frac{\mathrm{d} y}{\mathrm{d} x} + 2x^2\frac{\mathrm{d} y}{\mathrm{d} x} + 5xy^{-2}\frac{\mathrm{d} y}{\mathrm{d} x} = -4xy+ 5y^{-1}

Then we will will factor out the common factor of \displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}. This results in

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}[2y + 2x^2 + 5xy^{-2}] = -4xy + 5y^{-1}

Then, to isolate \displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}, we divide both sides by \displaystyle [2y + 2x^2 + 5xy^{-2}].

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{-4xy + 5y^{-1}}{2y + 2x^2 + 5xy^{-2}}

Now we need to simplify and get rid of the negative exponents. To do this, we can simply multiply the numerator and denominator by \displaystyle y^2. This will result in

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{-4xy + 5y^{-1}}{2y + 2x^2 + 5xy^{-2}} \cdot \frac{y^2}{y^2}

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{-4xy^3 + 5y}{2y^3 + 2x^2y^2 + 5x}

Which is the correct answer.

 

 

 

Example Question #451 : Ap Calculus Ab

Given the function \displaystyle \small \small \small z(x)=\cos x^{12}, find its derivative. 

Possible Answers:

\displaystyle \small \small \small z'(x)=-12x^{11}\sin x^{12}

\displaystyle \small \small \small \small z'(x)=-12x^{11}\cos x^{12}

\displaystyle \small \small \small \small z'(x)=12x^{11}\sin x^{12}

\displaystyle \small \small \small \small z'(x)=-\sin 12x^{11}

Correct answer:

\displaystyle \small \small \small z'(x)=-12x^{11}\sin x^{12}

Explanation:

Given the function \displaystyle \small \small \small z(x)=\cos x^{12}, we can find its derivative using the chain rule, which states that 

\displaystyle \small [f(g(x))]'=f'(g(x))g'(x)

where \displaystyle \small \small f(x)=\cos x and \displaystyle \small \small g(x)=x^{12}  for \displaystyle \small z(x). We have \displaystyle \small f'(x)=-\sin x and \displaystyle \small g'(x)=12x^{11}, which gives us 

\displaystyle \small \small z'(x)=-\sin x^{12}\cdot 12x^{11}=-12x^{11}\sin x^{12}

Example Question #151 : Computation Of The Derivative

Given the function \displaystyle \small \small \small \small z(x)=e^{x^{-1}}, find its derivative.

Possible Answers:

\displaystyle \small \small \small \small \small z'(x)=\frac{e^{x^{-1}}}{x}

\displaystyle \small \small \small \small z'(x)=-\frac{e^{x^{-1}}}{x^2}

\displaystyle \small \small \small \small \small z'(x)=e^{-x^{-2}}

\displaystyle \small \small \small \small \small z'(x)=-\frac{e^{x^{-1}}}{x}

Correct answer:

\displaystyle \small \small \small \small z'(x)=-\frac{e^{x^{-1}}}{x^2}

Explanation:

Given the function \displaystyle \small \small \small \small z(x)=e^{x^{-1}}, we can find its derivative using the chain rule, which states that 

\displaystyle \small [f(g(x))]'=f'(g(x))g'(x)

where \displaystyle \small \small \small f(x)=e^{x} and \displaystyle \small \small \small g(x)=x^{-1}  for \displaystyle \small z(x). We have \displaystyle \small \small f'(x)=e^x and \displaystyle \small \small g'(x)=-x^{-2}, which gives us 

\displaystyle \small \small \small z'(x)=e^{x^{-1}}\cdot (-x^{-2})=-\frac{e^{x^{-1}}}{x^2}

Example Question #455 : Ap Calculus Ab

Given the function \displaystyle \small \small \small z(x)=e^{-x+x^3}, find its derivative.

 

Possible Answers:

\displaystyle \small \small \small \small \small z'(x)=e^{-x+x^3}\cdot (-x+x^{3})

\displaystyle \small \small \small \small z'(x)=e^{-x+x^3}\cdot (-1+x^{3})

\displaystyle \small \small \small \small \small \small \small z'(x)=e^{-x+x^3}\cdot (-1+3x^{2})

\displaystyle \small \small \small \small \small z'(x)=e^{-1+3x^2}\cdot (-1+x^{3})

Correct answer:

\displaystyle \small \small \small \small \small \small \small z'(x)=e^{-x+x^3}\cdot (-1+3x^{2})

Explanation:

Given the function \displaystyle \small \small \small z(x)=e^{-x+x^3}, we can find its derivative using the chain rule, which states that 

\displaystyle \small [f(g(x))]'=f'(g(x))g'(x)

where \displaystyle \small \small \small f(x)=e^{x} and \displaystyle \small \small \small \small g(x)=-x+x^3  for \displaystyle \small z(x). We have \displaystyle \small \small f'(x)=e^x and \displaystyle \small \small \small g'(x)=-1+3x^2, which gives us 

\displaystyle \small \small \small \small \small z'(x)=e^{-x+x^3}\cdot (-1+3x^{2})

Example Question #152 : Computation Of The Derivative

Given the function \displaystyle \small \small \small \small \small z(x)=e^{\cos x+\sin x}, find its derivative.

Possible Answers:

\displaystyle \small \small \small z'(x)=e^{\cos x+\sin x}\cdot (\sin x+\cos x)

\displaystyle \small \small \small z'(x)=e^{\cos x-\sin x}\cdot (-\sin x+\cos x)

\displaystyle \small \small \small z'(x)=e^{\cos x+\sin x}

\displaystyle \small \small z'(x)=e^{\cos x+\sin x}\cdot (-\sin x+\cos x)

Correct answer:

\displaystyle \small \small z'(x)=e^{\cos x+\sin x}\cdot (-\sin x+\cos x)

Explanation:

Given the function \displaystyle \small \small \small \small \small z(x)=e^{\cos x+\sin x}, we can find its derivative using the chain rule, which states that 

\displaystyle \small [f(g(x))]'=f'(g(x))g'(x)

where \displaystyle \small \small \small \small f(x)=e^{x} and \displaystyle \small \small \small \small \small \small g(x)=\cos x+\sin x  for \displaystyle \small z(x). We have \displaystyle \small \small f'(x)=e^x and \displaystyle \small \small \small \small \small \small g'(x)=-\sin x+\cos x, which gives us 

\displaystyle \small \small z'(x)=e^{\cos x+\sin x}\cdot (-\sin x+\cos x)

Example Question #153 : Computation Of The Derivative

Given the function \displaystyle \small \small \small \small z(x)=e^{e^x-x^5}, find its derivative.

Possible Answers:

\displaystyle \small \small \small \small \small \small \small z'(x)=e^{e^x-5x^4}\cdot (e^x-5x^4)

\displaystyle \small \small \small \small \small \small \small z'(x)=e^{e^x-5x^4}

\displaystyle \small \small \small \small \small \small \small z'(x)=e^{e^x-x^5}\cdot (e^x-5x^4)

\displaystyle \small \small \small \small \small \small \small \small z'(x)=e^{e^x-5x^4}\cdot (e^x-x^5)

Correct answer:

\displaystyle \small \small \small \small \small \small \small z'(x)=e^{e^x-x^5}\cdot (e^x-5x^4)

Explanation:

Given the function \displaystyle \small \small \small \small z(x)=e^{e^x-x^5}, we can find its derivative using the chain rule, which states that 

\displaystyle \small [f(g(x))]'=f'(g(x))g'(x)

where \displaystyle \small \small \small \small f(x)=e^{x} and \displaystyle \small \small \small \small \small g(x)=e^x-x^5  for \displaystyle \small z(x). We have \displaystyle \small \small f'(x)=e^x and \displaystyle \small \small \small \small g'(x)=e^x-5x^4, which gives us 

\displaystyle \small \small \small \small \small \small \small z'(x)=e^{e^x-x^5}\cdot (e^x-5x^4)

Learning Tools by Varsity Tutors