AP Calculus AB : AP Calculus AB

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #95 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

Integrate: 

Possible Answers:

Correct answer:

Explanation:

First, split up into 2 integrals:

Then integrate and simplify:

Don't forget to add C because it's an indefinite integral:

Example Question #96 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

Integrate: 

Possible Answers:

Correct answer:

Explanation:

First, FOIL the binomial:

Once that's expanded, integrate each piece separately:

Then simplify and add C because it's an indefinite integral:

 

Example Question #112 : Asymptotic And Unbounded Behavior

Possible Answers:

Undefined

Correct answer:

Explanation:

Remember the Rundamental Theorem of Calculus: If , then .

To solve for the indefinite integral, we can use the reverse power rule. We raise the power of the exponents by one and divide by that new exponent. For this problem, that would look like:

Remember, when taking an integral, definite or indefinite, we always add , as there could be a constant involved.

Now we can plug that back into the problem.

Notice that the 's cancel out. Plug in the values given in the problem:

Example Question #4 : Calculus 3

\int_{-1}^{0}e^{1-t}dt =

Possible Answers:

1-e^{2}

e^{2}-e

undefined

e+1

e^{2}-1

Correct answer:

e^{2}-e

Explanation:

We can use the substitution technique to evaluate this integral.

Let .

We will differentiate  with respect to .

, which means that .

We can solve for  in terms of , which gives us .

We will also need to change the bounds of the integral. When , , and when , .

We will now substitute  in for the , and we will substitute  for .

\int_{2}^{1}-e^{u}du

 

\int_{2}^{1}-e^{u}du = -e^{u}|_{2}^{1}=-e^{1}-(-e^{2})=e^{2}-e^{1}

 

The answer is e^{2}-e.

Example Question #1 : Finding Integrals By Substitution

Evaluate:

 

Possible Answers:

Correct answer:

Explanation:

Set .

Then and .

Also, since , the limits of integration change to  and .

Substitute:

 

 

 

 

Example Question #331 : Ap Calculus Ab

Evaluate the following integral: 

Possible Answers:

Correct answer:

Explanation:

First you must know that:

  and  

Therefore we can rewrite our problem in this form:

where .

Thus the integral becomes,

Example Question #332 : Ap Calculus Ab

Evaluate:

 .

Possible Answers:

Correct answer:

Explanation:

Setting the limits from zero to two we can find that,

Example Question #333 : Ap Calculus Ab

Evaluate:

 .

Possible Answers:

Correct answer:

Explanation:

Seeing that the equation contains an absolute value you should know that the graph must always remain positive therefore resulting in a V-shaped graph.

Since the equation is , when  then the vertex of the graph is at .

The graph contains a triangle ranging from 0 to 1 and a triangle from 1 to 3. Remebering that taking the interal of a function is the same as finding the area under the curve we can use these triangles to solve our problem.

The area of the triangle from 0 to 1 is,

.

The area of the triangle from 1 to 3 is,

.

Thus the evaluated integral must be these areas added together,

.

Example Question #131 : Functions, Graphs, And Limits

Evaluate:

 .

Possible Answers:

Correct answer:

Explanation:

For this problem we need to use the U Substitution Method.

Using the U-du Rule you can set  and .

Because we only have a dx in our problem we need to solve for dx, thus 

.

When  and when

Therefore your new equation will be:

 

.

Plugging in our interval we get,

 

Example Question #97 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

Evaluate:

Possible Answers:

 

Correct answer:

 

Explanation:

The first step is to find the antiderivative, recalling that:

.  

 

For this integral:

where the intergral would be evaluated from  to  (the absolute value bar is not necessary, since both limits of integration are greater than zero):

Learning Tools by Varsity Tutors