Algebra II : Mathematical Relationships and Basic Graphs

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #41 : Mathematical Relationships And Basic Graphs

Evaluate the summation:  \displaystyle \sum_{n=3}^{6} (1-6n)

Possible Answers:

\displaystyle -69

\displaystyle -17

\displaystyle -104

\displaystyle -87

\displaystyle -14

Correct answer:

\displaystyle -104

Explanation:

This summation will repeat three times, for \displaystyle n=4,5,6.

Substitute the first term into the parentheses, repeat, and sum the process for the next three terms.

\displaystyle \sum_{n=3}^{6} (1-6n)

\displaystyle =(1-6(3))+(1-6(4))+(1-6(5))+(1-6(6))

Simplify each term.

\displaystyle (-17)+(-23)+(-29)+(-35) =-104

The answer is:  \displaystyle -104

Example Question #42 : Mathematical Relationships And Basic Graphs

Determine the value of:  \displaystyle \sum_{0}^{2}2n^6

Possible Answers:

\displaystyle 128

\displaystyle 26

\displaystyle 130

\displaystyle 66

Correct answer:

\displaystyle 130

Explanation:

Expand the summation sign.  Start with zero as the first index, then one, and finally two.  Since two is the top digit, the summation will stop.

\displaystyle \sum_{0}^{2}2n^6=2(0)^6+2(1)^6+2(2)^6

Simplify these terms.

\displaystyle 0+2+2(64) = 2+128 = 130

The answer is:  \displaystyle 130

Example Question #41 : Mathematical Relationships And Basic Graphs

\displaystyle \sum_{k=1}^{4} k^2 - 7

Possible Answers:

\displaystyle 2

\displaystyle 104

\displaystyle 27

\displaystyle -7

Correct answer:

\displaystyle 2

Explanation:

This notation is asking us to add \displaystyle k^2 - 7 for all integer values of k between 1 and 4: 

\displaystyle (1^2 - 7 ) + (2^2 - 7 ) + (3^2 - 7 ) + (4^2 - 7 )

\displaystyle (1-7) + (4-7) + (9-7) + (16-7 ) = -6 + -3 + 2 + 9 = 2

 

Example Question #22 : Sigma Notation

Possible Answers:

\displaystyle 15

\displaystyle 16

\displaystyle 14

\displaystyle 8.\overline{3}

Correct answer:

\displaystyle 16

Explanation:

This expression is asking us to add the expressions for every integer value of n from 0 to 4:

\displaystyle \frac{4!}{0! \cdot 4!} + \frac{4!}{1!\cdot3! } + \frac{4!}{2! \cdot 2! } + \frac{4! } { 3! \cdot 1! } + \frac{4!}{4! \cdot 0!}

\displaystyle 1 + 4 + 6 + 4 + 1 = 16

Example Question #23 : Sigma Notation

\displaystyle \sum_{k=1}^{3} 20 \cdot (\frac{1}{2} ) ^k

Possible Answers:

\displaystyle 15

\displaystyle 35

\displaystyle 30

\displaystyle 17.5

Correct answer:

\displaystyle 17.5

Explanation:

\displaystyle \sum_{k=1}^{3} 20 \cdot (\frac{1}{2} ) ^kmeans that we are adding half of 20, plus half of that, plus half of that.

1: \displaystyle 20 \cdot (\frac{1}{2} ) = 10

2: \displaystyle 10(\frac{1}{2} ) = 5

3: \displaystyle 5(\frac{1}{2} ) = 2.5

\displaystyle 10 + 5 + 2.5 = 17.5

Example Question #42 : Mathematical Relationships And Basic Graphs

\displaystyle \sum_{n=3}^{5} \left (n-5 \right )

Possible Answers:

\displaystyle -9

\displaystyle 2

\displaystyle -3

\displaystyle 3

Correct answer:

\displaystyle -3

Explanation:

This is asking us to add \displaystyle n-5 for n = 3 and 4.

\displaystyle (3 -5 ) + (4 - 5 ) = -2 + -1 = -3

Example Question #43 : Mathematical Relationships And Basic Graphs

Calculate \displaystyle \sum_{n=0}^{5} \frac{1}{2}n^2 +1

Possible Answers:

\displaystyle 32.5

\displaystyle 27.5

\displaystyle 20

\displaystyle 33.5

Correct answer:

\displaystyle 33.5

Explanation:

This is asking us to plug in the integers between 0 and 5, then add these numbers together.

\displaystyle (\frac{1}{2} (0)^2 +1 ) + (\frac{1}{2} (1)^2 +1 ) + (\frac{1}{2} (2)^2 +1 ) + (\frac{1}{2} (3)^2 +1 ) + (\frac{1}{2} (4)^2 +1 ) +(\frac{1}{2} (5)^2 +1 )

\displaystyle = (0+1) + (.5+1) + (2+1) + (4.5+1) + (8+1) + (12.5+1) = 33.5

Example Question #44 : Mathematical Relationships And Basic Graphs

Evaluate \displaystyle \sum_{n=0}^{4} 6 \cdot(\frac{2}{3})^n

Possible Answers:

\displaystyle 14.\overline{4}

\displaystyle 15.\overline{629}

\displaystyle 9.\overline{629}

\displaystyle 1.\overline{185}

Correct answer:

\displaystyle 15.\overline{629}

Explanation:

This is asking us to add 6 plus two thirds of 6, plus two thirds of that, etc.

\displaystyle 6 + 6 \cdot \frac{2}{3} + 6 \cdot\left ( \frac{2}{3} \right )^2 + 6 \cdot \left (\frac{2}{3} \right ) ^3 + 6 \cdot \left (\frac{2}{3} \right )^4

\displaystyle = 6 + 4 + 2.\overline{6} + 1. \overline{7} + 1.\overline{185} = 15. \overline{629}

Example Question #45 : Mathematical Relationships And Basic Graphs

Evaluate \displaystyle \sum_{n=4}^{8} (n+1)^2

Possible Answers:

\displaystyle 285

\displaystyle 330

\displaystyle 54

\displaystyle 255

Correct answer:

\displaystyle 255

Explanation:

This is asking us to substitute integer values between 4 and 8 for n, and then add the results.

\displaystyle (4+1)^2 + (5+1)^2 + (6+1)^2 + (7+1)^2 + (8+1)^2

\displaystyle =25 + 36+49+64+81 = 255

Example Question #46 : Mathematical Relationships And Basic Graphs

Evaluate \displaystyle \frac{1}{3} \sum_{k=0}^{4} 2k-1

Possible Answers:

\displaystyle 5

\displaystyle 3

\displaystyle -17

\displaystyle \frac{17}{3}

Correct answer:

\displaystyle 5

Explanation:

First, evaluate the sigma expression. It is asking us to plug in for k all of the integers between 0 and 4:

\displaystyle \left [2(0)-1 \right ] + \left [2(1)-1 \right ] + \left [2(2) - 1 \right ]+ \left [2(3) - 1 \right ] + \left [2(4) -1 \right ]

\displaystyle = -1 + 1 + 3 + 5 + 7 = 15

Now, multiply by \displaystyle \frac{1}{3} : \frac{1}{3} \cdot 15 = 5

Learning Tools by Varsity Tutors