Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4531 : Algebra Ii

Multiply these fractions:

\(\displaystyle \frac{1}{10}*\frac{2}{5}\)

Possible Answers:

\(\displaystyle \frac{3}{25}\)

\(\displaystyle \frac{2}{25}\)

\(\displaystyle \frac{1}{25}\)

\(\displaystyle \frac{1}{50}\)

Correct answer:

\(\displaystyle \frac{1}{25}\)

Explanation:

When multiplying fractions, all we have to do is multiply the numerators together and multiply the denominators together:

\(\displaystyle \frac{1}{10}*\frac{2}{5}=\frac{1*2}{10*5}=\frac{2}{50}\)

Simply the fraction to get the final answer:

\(\displaystyle \frac{2}{50}\div \frac{2}{2}=\frac{1}{25}\)

Example Question #4532 : Algebra Ii

Multiply these fractions:

\(\displaystyle \frac{1}{12}*\frac{4}{5}\)

Possible Answers:

\(\displaystyle \frac{4}{15}\)

\(\displaystyle \frac{1}{5}\)

\(\displaystyle \frac{2}{15}\)

\(\displaystyle \frac{1}{15}\)

Correct answer:

\(\displaystyle \frac{1}{15}\)

Explanation:

When multiplying fractions, all we have to do is multiply the numerators together and multiply the denominators together:

\(\displaystyle \frac{1}{12}*\frac{4}{5}=\frac{1*4}{12*5}=\frac{4}{60}\)

Simply the fraction to get the final answer:

\(\displaystyle \frac{4}{60}\div \frac{4}{4}=\frac{1}{15}\)

Example Question #4533 : Algebra Ii

Multiply these fractions:

\(\displaystyle \frac{1}{4}*\frac{6}{7}\)

Possible Answers:

\(\displaystyle \frac{5}{14}\)

\(\displaystyle \frac{3}{14}\)

\(\displaystyle \frac{2}{7}\)

\(\displaystyle \frac{1}{14}\)

Correct answer:

\(\displaystyle \frac{3}{14}\)

Explanation:

When multiplying fractions, all we have to do is multiply the numerators together and multiply the denominators together:

\(\displaystyle \frac{1}{4}*\frac{6}{7}=\frac{1*6}{4*7}=\frac{6}{28}\)

Simply the fraction to get the final answer:

\(\displaystyle \frac{6}{28}\div \frac{2}{2}=\frac{3}{14}\)

Example Question #4534 : Algebra Ii

Multiply these fractions:

\(\displaystyle \frac{12}{17}*\frac{5}{4}\)

Possible Answers:

\(\displaystyle \frac{13}{17}\)

\(\displaystyle \frac{15}{17}\)

\(\displaystyle \frac{16}{17}\)

\(\displaystyle \frac{14}{17}\)

Correct answer:

\(\displaystyle \frac{15}{17}\)

Explanation:

When multiplying fractions, all we have to do is multiply the numerators together and multiply the denominators together:

\(\displaystyle \frac{12}{17}*\frac{5}{4}=\frac{12*5}{17*4}=\frac{60}{68}\)

Simply the fraction to get the final answer:

\(\displaystyle \frac{60}{68}\div \frac{4}{4}=\frac{15}{17}\)

Example Question #4535 : Algebra Ii

Multiply these fractions:

\(\displaystyle \frac{4}{9}*\frac{2}{3}\)

Possible Answers:

\(\displaystyle \frac{10}{27}\)

\(\displaystyle \frac{7}{27}\)

\(\displaystyle \frac{8}{27}\)

\(\displaystyle \frac{6}{27}\)

Correct answer:

\(\displaystyle \frac{8}{27}\)

Explanation:

When multiplying fractions, all we have to do is multiply the numerators together and multiply the denominators together:

\(\displaystyle \frac{4}{9}*\frac{2}{3}=\frac{4*2}{3*9}=\frac{8}{27}\)

Example Question #4536 : Algebra Ii

Divide these fractions:

\(\displaystyle \frac{16}{28}\div \frac{4}{7}\)

Possible Answers:

\(\displaystyle 1\frac{1}{2}\)

\(\displaystyle \frac{1}{3}\)

\(\displaystyle \frac{1}{4}\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 1\)

Explanation:

When dividing fractions, first we need to flip the second fraction. 

Then multiply the numerators together and multiply the denominators together:

\(\displaystyle \frac{16}{28}\div \frac{4}{7}=\frac{16}{28}*\frac{7}{4}=\frac{16*7}{28*4}=\frac{112}{112}\)

Simplify the fraction to get the final answer:

\(\displaystyle \frac{112}{112}=1\)

Example Question #4537 : Algebra Ii

Divide these fractions:

\(\displaystyle \frac{25}{60}\div \frac{1}{5}\)

Possible Answers:

\(\displaystyle 2\frac{3}{12}\)

\(\displaystyle 2\)

\(\displaystyle 1\frac{1}{12}\)

\(\displaystyle 2\frac{1}{12}\)

Correct answer:

\(\displaystyle 2\frac{1}{12}\)

Explanation:

When dividing fractions, first we need to flip the second fraction. Then multiply the numerators together and multiply the denominators together:

\(\displaystyle \frac{25}{60}\div \frac{1}{5}=\frac{25}{60}*\frac{5}{1}=\frac{25*5}{60}=\frac{125}{60}\)

Simplify the fraction to get the final answer:

\(\displaystyle \frac{125}{60}\div \frac{5}{5}=\frac{25}{12}=2\frac{1}{12}\)

Example Question #1 : Division With Fractions

Divide these fractions:

\(\displaystyle \frac{15}{30}\div15\)

Possible Answers:

\(\displaystyle \frac{1}{30}\)

\(\displaystyle \frac{2}{15}\)

\(\displaystyle \frac{1}{10}\)

\(\displaystyle \frac{1}{15}\)

Correct answer:

\(\displaystyle \frac{1}{30}\)

Explanation:

When dividing fractions, first we need to flip the second fraction. Then multiply the numerators together and multiply the denominators together:

\(\displaystyle \frac{15}{30}\div15=\frac{15}{30}*\frac{1}{15}=\frac{15*1}{30*15}\)

Simplify the fraction to get the final answer:

\(\displaystyle \frac{15*1}{30*15}=\frac{1}{30}\)

Example Question #2 : Division With Fractions

Divide these fractions:

\(\displaystyle \frac{8}{56}\div \frac{1}{8}\)

Possible Answers:

\(\displaystyle \frac{1}{7}\)

\(\displaystyle 1\frac{2}{7}\)

\(\displaystyle 1\frac{1}{7}\)

\(\displaystyle 1\frac{6}{7}\)

Correct answer:

\(\displaystyle 1\frac{1}{7}\)

Explanation:

When dividing fractions, first we need to flip the second fraction. Then multiply the numerators together and multiply the denominators together:

\(\displaystyle \frac{8}{56}\div \frac{1}{8}=\frac{8}{56}*{8}=\frac{8*8}{56}=\frac{64}{56}\)

Simplify the fraction to get the final answer:

\(\displaystyle \frac{64}{56}\div \frac{8}{8}=\frac{8}{7}=1\frac{1}{7}\)

Example Question #196 : Fractions

Divide these fractions:

\(\displaystyle \frac{49}{84}\div \frac{14}{3}\)

Possible Answers:

\(\displaystyle 1\frac{1}{8}\)

\(\displaystyle \frac{1}{8}\)

\(\displaystyle \frac{1}{4}\)

\(\displaystyle \frac{3}{8}\)

Correct answer:

\(\displaystyle \frac{1}{8}\)

Explanation:

When dividing fractions, first we need to flip the second fraction. Then multiply the numerators together and multiply the denominators together:

\(\displaystyle \frac{49}{84}\div \frac{14}{3}=\frac{49}{84}*\frac{3}{14}=\frac{49*3}{84*14}\)

Simplify the fraction to get the final answer:

\(\displaystyle \frac{49*3}{84*14}=\frac{7*3}{84*2}=\frac{21}{168}\)

\(\displaystyle \frac{21}{168}\div \frac{21}{21}=\frac{1}{8}\)

Learning Tools by Varsity Tutors