Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #48 : Radicals And Fractions

Solve the radical:  \displaystyle \frac{\sqrt{3}\times \sqrt{5}}{\sqrt{32}}

Possible Answers:

\displaystyle \frac{\sqrt{30}}{4}

\displaystyle \frac{2\sqrt{15}}{3}

\displaystyle \frac{\sqrt{15}}{8}

\displaystyle \frac{\sqrt{30}}{8}

\displaystyle \frac{\sqrt{15}}{4}

Correct answer:

\displaystyle \frac{\sqrt{30}}{8}

Explanation:

Simplify the top of the fraction.

\displaystyle \frac{\sqrt{3}\times \sqrt{5}}{\sqrt{32}}=\frac{\sqrt{15}}{\sqrt{32}}

We can simplify the denominator first.

\displaystyle \sqrt{32} = \sqrt{16}\times \sqrt2 =4\sqrt2

Rationalize the denominator by multiplying the top and bottom of the fraction by the radical.  Simplify the radicals.

\displaystyle \frac{\sqrt{15}}{4\sqrt2}\cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{30}}{4 \times 2}= \frac{\sqrt{30}}{8}

The answer is:  \displaystyle \frac{\sqrt{30}}{8}

Example Question #1541 : Mathematical Relationships And Basic Graphs

Simplify:  \displaystyle \frac{4\sqrt{8}}{5\sqrt{3}}

Possible Answers:

\displaystyle \frac{8\sqrt{6}}{15}

\displaystyle \frac{3\sqrt{6}}{4}

\displaystyle \frac{2\sqrt{6}}{5}

\displaystyle \frac{4\sqrt{3}}{5}

\displaystyle \frac{\sqrt{6}}{6}

Correct answer:

\displaystyle \frac{8\sqrt{6}}{15}

Explanation:

Rationalize the denominator by multiplying both the top and bottom by the denominator.

\displaystyle \frac{4\sqrt{8}}{5\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{4\sqrt{24}}{5\times3} = \frac{4\sqrt{4}\times \sqrt{6}}{15}=\frac{4(2)\times \sqrt{6}}{15}

The answer is:  \displaystyle \frac{8\sqrt{6}}{15}

Example Question #1551 : Mathematical Relationships And Basic Graphs

Simplify:  \displaystyle \frac{7\sqrt7}{\sqrt{\frac{1}{7}}}

Possible Answers:

\displaystyle \sqrt{14}

\displaystyle 7

\displaystyle \frac{1}{7}

\displaystyle 49

\displaystyle \frac{1}{49}

Correct answer:

\displaystyle 49

Explanation:

The radical \displaystyle \sqrt{\frac{1}{7}} can be rewritten as:

\displaystyle \frac{\sqrt1}{\sqrt7} = \frac{1}{\sqrt7}

Rationalize the denominator by multiplying both the top and bottom by the denominator.

\displaystyle \frac{1}{\sqrt7} \cdot \frac{\sqrt7}{\sqrt7} =\frac{\sqrt7}{7}

Rewrite the given question.

\displaystyle \frac{7\sqrt7}{\sqrt{\frac{1}{7}}} = \frac{7\sqrt7}{\frac{\sqrt7}{7}}

Simplify this complex fraction by rewriting it as a division sign.

\displaystyle \frac{7\sqrt7}{\frac{\sqrt7}{7}} = 7\sqrt7 \div \frac{\sqrt7}{7}

Change the division sign to multiplication and take the reciprocal of the second term.

\displaystyle 7\sqrt7 \div \frac{\sqrt7}{7} = 7\sqrt7 \times \frac{7}{\sqrt7} =49

The answer is:  \displaystyle 49

Example Question #4211 : Algebra Ii

Rationalize:  \displaystyle \frac{9}{\sqrt{20}}

Possible Answers:

\displaystyle \frac{3\sqrt{2}}{4}

\displaystyle \frac{9\sqrt{2}}{4}

\displaystyle \frac{3\sqrt{5}}{10}

\displaystyle \frac{9\sqrt{5}}{10}

\displaystyle \frac{3\sqrt{2}}{2}

Correct answer:

\displaystyle \frac{9\sqrt{5}}{10}

Explanation:

We can factor the square root twenty before rationalizing the value so that the final term would not be as difficult to factor.

Factor \displaystyle \sqrt{20} using factors of perfect squares.

\displaystyle \sqrt{20}= \sqrt{4}\times \sqrt5 = 2\sqrt5

The expression becomes:  

\displaystyle \frac{9}{\sqrt{20}} = \frac{9}{2\sqrt{5}}

Instead of multiplying \displaystyle \sqrt{20} on both the top and bottom, we will multiply \displaystyle \sqrt5 on the top and bottom.

\displaystyle \frac{9}{2\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{9\sqrt{5}}{10}

The answer is:  \displaystyle \frac{9\sqrt{5}}{10}

Example Question #221 : Simplifying Radicals

Try without a calculator.

Simplify:

\displaystyle \sqrt{\frac{5}{8}}

Possible Answers:

\displaystyle \frac{\sqrt{10}}{2}

None of the other choices gives the correct response.

\displaystyle \frac{\sqrt{5}}{2}

\displaystyle \frac{\sqrt{5}}{4}

\displaystyle \frac{\sqrt{10}}{4}

Correct answer:

\displaystyle \frac{\sqrt{10}}{4}

Explanation:

First, apply the Quotient of Radicals Property to split the radical into a numerator and a denominator:

\displaystyle \sqrt{\frac{5}{8}}

\displaystyle = \frac{\sqrt{5}}{\sqrt{8}}

Simplify the denominator by applying the Product of Radicals Property, as follows:

\displaystyle = \frac{\sqrt{5}}{\sqrt{4} \cdot \sqrt{2}}

\displaystyle = \frac{\sqrt{5}}{2\cdot \sqrt{2}}

Rationalize the denominator by multiplying both halves of the fraction by \displaystyle \sqrt{2}:

\displaystyle = \frac{\sqrt{5} \cdot \sqrt{2}}{2\cdot \sqrt{2} \cdot \sqrt{2}}

Apply the Product of Radicals property in the numerator:

\displaystyle = \frac{\sqrt{5 \cdot 2}}{2\cdot 2}

\displaystyle = \frac{\sqrt{10}}{4},

the correct response.

Example Question #4212 : Algebra Ii

Try without a calculator.

Simplify:

\displaystyle \sqrt{\frac{12}{7}}

Possible Answers:

\displaystyle \frac{3\sqrt{14} }{7}

None of these

\displaystyle \frac{ \sqrt{42} }{7}

\displaystyle \frac{2 \sqrt{21} }{7}

\displaystyle \frac{6\sqrt{7} }{7}

Correct answer:

\displaystyle \frac{2 \sqrt{21} }{7}

Explanation:

First, apply the Quotient of Radicals Property to split the radical into a numerator and a denominator:

\displaystyle \sqrt{\frac{12}{7}}

\displaystyle = \frac{\sqrt{12}}{\sqrt{7}}

Simplify the numerator by applying the Product of Radicals Property, as follows:

\displaystyle \frac{\sqrt{4 \cdot 3 }}{\sqrt{7}}

\displaystyle = \frac{\sqrt{4} \cdot \sqrt{3}}{\sqrt{7}}

\displaystyle = \frac{2 \sqrt{3}}{\sqrt{7}}

Rationalize the denominator by multiplying both halves of the fraction by \displaystyle \sqrt{7}:

\displaystyle \frac{2 \sqrt{3} \cdot \sqrt{7} }{\sqrt{7} \cdot \sqrt{7}}

Apply the Product of Radicals Property in the numerator:

\displaystyle \frac{2 \sqrt{3 \cdot 7} }{7}

\displaystyle = \frac{2 \sqrt{21} }{7}

Example Question #1 : Solving Radical Equations

Solve for \displaystyle x:

\displaystyle x + 3 \sqrt{x} = 28

Possible Answers:

None of the other responses is correct.

Correct answer:

None of the other responses is correct.

Explanation:

One way to solve this equation is to substitute \displaystyle u for \displaystyle \sqrt{x} and, subsequently, \displaystyle u^{2} for \displaystyle x:

\displaystyle x + 3 \sqrt{x} = 28

\displaystyle u^{2} + 3 u = 28

\displaystyle u^{2} + 3 u - 28 = 0

Solve the resulting quadratic equation by factoring the expression:

\displaystyle (u+7)(u-4) = 0

Set each linear binomial to sero and solve:

\displaystyle u + 7 = 0

\displaystyle u = -7

or 

\displaystyle u - 4 = 0

\displaystyle u = 4

 

Substitute back:

\displaystyle u = -7

\displaystyle \sqrt{x}= -7 - this is not possible.

 

\displaystyle u = 4

\displaystyle \sqrt{x}= 4

\displaystyle x = 16 - this is the only solution.

 

None of the responses state that \displaystyle x = 16 is the only solution.

 

 

Example Question #1 : Solving Radical Equations

Solve the following radical equation.

\displaystyle \frac{10\sqrt{8}}{\sqrt{16}} + 3\sqrt{2}

Possible Answers:

\displaystyle 13\sqrt{2}

\displaystyle 5\sqrt{8} + 3\sqrt{2}

\displaystyle \frac{10}{\sqrt{2} } +3\sqrt{2}

\displaystyle 8\sqrt{2}

Correct answer:

\displaystyle 8\sqrt{2}

Explanation:

We can simplify the fraction:

\displaystyle \frac{10\sqrt{8}}{\sqrt{16}} = \frac{10\sqrt{4\times 2}}{4}=\frac{10(2\sqrt{2})}{4} =\frac{20\sqrt{2}}{4}=5\sqrt{2}

Plugging this into the equation leaves us with:

\displaystyle 5\sqrt{2} + 3\sqrt{2} = 8\sqrt{2} 

Note: Because they are like terms, we can add them.

 

Example Question #1 : Solving Radical Equations

Solve the following radical equation. 

\displaystyle \sqrt{x-6} =2

Possible Answers:

\displaystyle x=-10

\displaystyle x=6 +\sqrt{2}

\displaystyle x=10

\displaystyle x=2

Correct answer:

\displaystyle x=10

Explanation:

In order to solve this equation, we need to know that

             \displaystyle (\sqrt{x-6})^{2} = x-6

How? Because of these two facts: 

  1. \displaystyle \sqrt{x-6} = (x-6)^{\frac{1}{2}}
  2. Power rule of exponents: when we raise a power to a power, we need to mulitply the exponents:

                                      \displaystyle \frac{1}{2} \times2=1

 

With this in mind, we can solve the equation:

\displaystyle \sqrt{x-6} =2

In order to eliminate the radical, we have to square it. What we do on one side, we must do on the other.

\displaystyle (\sqrt{x-6})^{2} = 2^{2}

\displaystyle x-6=4

\displaystyle x=10

 

Example Question #1 : Solving Radical Equations

Solve the following radical equation.

\displaystyle \sqrt{\frac{x}{2}}=5

Possible Answers:

\displaystyle x=2\sqrt{5}

\displaystyle x=10

\displaystyle x=\sqrt{10}

\displaystyle x=50

Correct answer:

\displaystyle x=50

Explanation:

In order to solve this equation, we need to know that 

 \displaystyle \bigg(\sqrt{\frac{x}{2}}\bigg)^{2} =\frac{x}{2}

Note: This is due to the power rule of exponents.

With this in mind, we can solve the equation:

\displaystyle \sqrt{\frac{x}{2}} =5

In order to get rid of the radical we square it. Remember what we do on one side, we must do on the other.

\displaystyle \bigg(\sqrt{\frac{x}{2}}\bigg)^{2} =5^{2}

\displaystyle \frac{x}{2} =25

\displaystyle \frac{2}{1} \bigg(\frac{x}{2}\bigg)=25\bigg(\frac{2}{1}\bigg)

\displaystyle x=50

Learning Tools by Varsity Tutors