Algebra II : Adding and Subtracting Radicals

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #82 : Simplifying Radicals

\displaystyle 4\sqrt{169}+7\sqrt{52}+5\sqrt{325}

Possible Answers:

\displaystyle 16\sqrt{13}

\displaystyle 91\sqrt{13}

\displaystyle 52+39\sqrt{13}

\displaystyle 25\sqrt{13}

\displaystyle 12\sqrt{13}

Correct answer:

\displaystyle 52+39\sqrt{13}

Explanation:

To add or subtract radicals, they must be the same root and have the same number under the radical before combining them. Look for perfect squares that divide into the number under the radicals because those can be simplified.

\displaystyle 4\sqrt{169}+7\sqrt{52}+5\sqrt{325}

\displaystyle 4\cdot 13+7\sqrt{4\cdot 13}+5\sqrt{25\cdot 13}

Take the square roots of each of the perfect squares in these radicals and bring it out of the radical. It will multiply to any coefficient in front of that radical

\displaystyle 52+7\cdot 2\sqrt{13}+5\cdot 5\sqrt{13}

\displaystyle 52+14\sqrt{13}+25\sqrt{13}

\displaystyle 52+39\sqrt{13}

Example Question #83 : Simplifying Radicals

\displaystyle 9\sqrt{14}-3\sqrt{126}+5\sqrt{896}

Possible Answers:

\displaystyle 40\sqrt{14}

\displaystyle 28\sqrt{14}

\displaystyle 58\sqrt{14}

\displaystyle 11\sqrt{14}

\displaystyle 16\sqrt{14}

Correct answer:

\displaystyle 40\sqrt{14}

Explanation:

To add or subtract radicals, they must be the same root and have the same number under the radical before combining them. Look for perfect squares that divide into the number under the radicals because those can be simplified.

\displaystyle 9\sqrt{14}-3\sqrt{126}+5\sqrt{896}

\displaystyle 9\sqrt{14}-3\sqrt{9\cdot 14}+5\sqrt{64\cdot 14}

Take the square roots of each of the perfect squares in these radicals and bring it out of the radical. It will multiply to any coefficient in front of that radical

\displaystyle 9\sqrt{14}-3\cdot 3\sqrt{14}+5\cdot 8\sqrt{14}

\displaystyle 9\sqrt{14}-9\sqrt{14}+40\sqrt{14}

\displaystyle 40\sqrt{14}

Example Question #91 : Simplifying Radicals

\displaystyle 10\sqrt{44}+5\sqrt{99}-7\sqrt{275}

Possible Answers:

\displaystyle \sqrt{11}

\displaystyle 8\sqrt{11}

\displaystyle 0

\displaystyle -90\sqrt{11}

\displaystyle -21\sqrt{11}

Correct answer:

\displaystyle 0

Explanation:

To add or subtract radicals, they must be the same root and have the same number under the radical before combining them. Look for perfect squares that divide into the number under the radicals because those can be simplified.

\displaystyle 10\sqrt{44}+5\sqrt{99}-7\sqrt{275}

\displaystyle 10\sqrt{4\cdot 11}+5\sqrt{9\cdot 11}-7\sqrt{25\cdot 11}

Take the square roots of each of the perfect squares in these radicals and bring it out of the radical. It will multiply to any coefficient in front of that radical

\displaystyle 10\cdot 2\sqrt{11}+5\cdot 3\sqrt{11}-7\cdot 5\sqrt{11}

\displaystyle 20\sqrt{11}+15\sqrt{11}-35\sqrt{11}

\displaystyle 0

Example Question #92 : Simplifying Radicals

Add the following radicals, if possible:  \displaystyle \sqrt2+\sqrt3+\sqrt{12}+\sqrt{24}

Possible Answers:

\displaystyle 2\sqrt2+\sqrt3+2\sqrt6

\displaystyle 2\sqrt2+4\sqrt3

\displaystyle \sqrt{41}

\displaystyle \sqrt2+3\sqrt3+2\sqrt6

Correct answer:

\displaystyle \sqrt2+3\sqrt3+2\sqrt6

Explanation:

Rewrite \displaystyle \sqrt{12} and \displaystyle \sqrt{24} by their factors.  The first two terms are already in their simplest forms.

\displaystyle \sqrt{12} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt3

\displaystyle \sqrt{24} = \sqrt{4}\cdot \sqrt{6} = 2\sqrt6

Rewrite the expression.

\displaystyle \sqrt2+\sqrt3+\sqrt{12}+\sqrt{24}= \sqrt2+\sqrt3+ 2\sqrt3+2\sqrt6

Combine like-terms.

The answer is:  \displaystyle \sqrt2+3\sqrt3+2\sqrt6

Example Question #93 : Simplifying Radicals

Add the radicals:  \displaystyle \sqrt{20} +\sqrt{45}

Possible Answers:

\displaystyle 5\sqrt{14}

\displaystyle 10\sqrt{2}

\displaystyle 5\sqrt5

\displaystyle 2\sqrt{10}

Correct answer:

\displaystyle 5\sqrt5

Explanation:

Simplify the square roots by writing them as a common factor of perfect squares.

\displaystyle \sqrt{20} +\sqrt{45} = \sqrt4 \cdot \sqrt5+ \sqrt9 \cdot \sqrt5

Simplify the perfect squares.

\displaystyle \sqrt4 \cdot \sqrt5+ \sqrt9 \cdot \sqrt5 = 2\sqrt5+3\sqrt5

Combine like-terms.

The answer is:  \displaystyle 5\sqrt5

Example Question #94 : Simplifying Radicals

\displaystyle 3\sqrt{175}-4\sqrt{252}+2\sqrt{112}

Possible Answers:

\displaystyle 15\sqrt{7}

\displaystyle 6\sqrt{7}

\displaystyle -\sqrt{7}

\displaystyle \sqrt{7}

\displaystyle 7\sqrt{13}

Correct answer:

\displaystyle -\sqrt{7}

Explanation:

To add or subtract radicals, they must be the same root and have the same number under the radical before combining them. Look for perfect squares that divide into the number under the radicals because those can be simplified.

\displaystyle 3\sqrt{175}-4\sqrt{252}+2\sqrt{112}

\displaystyle 3\sqrt{25\cdot 7}-4\sqrt{36\cdot 7}+2\sqrt{16\cdot 7}

Take the square roots of each of the perfect squares in these radicals and bring it out of the radical. It will multiply to any coefficient in front of that radical

\displaystyle 3\cdot 5\sqrt{7}-4\cdot 6\sqrt{7}+2\cdot 4\sqrt{7}

\displaystyle 15\sqrt{7}-24\sqrt{7}+8\sqrt{7}

\displaystyle -\sqrt{7}

Example Question #95 : Simplifying Radicals

\displaystyle 3\sqrt{48}-\sqrt{72}+5\sqrt{75}

Possible Answers:

\displaystyle 6\sqrt2-12

\displaystyle 12\sqrt{3}

\displaystyle 27\sqrt{3}-6\sqrt{2}

\displaystyle 37\sqrt{3}-6\sqrt{2}

Correct answer:

\displaystyle 37\sqrt{3}-6\sqrt{2}

Explanation:

To add or subtract radicals, they must be the same root and have the same number under the radical before combining them. Look for perfect squares that divide into the number under the radicals because those can be simplified.

\displaystyle 3\sqrt{48}-\sqrt{72}+5\sqrt{75}

\displaystyle 3\sqrt{16\cdot 3}-\sqrt{36\cdot 2}+5\sqrt{25\cdot 3}

Take the square roots of each of the perfect squares in these radicals and bring it out of the radical. It will multiply to any coefficient in front of that radical

\displaystyle 3\cdot 4\sqrt{3}-6\sqrt{2}+5\cdot 5\sqrt{3}

\displaystyle 12\sqrt{3}-6\sqrt{2}+25\sqrt{3}

Remember, only radicals with the same number can be combined

\displaystyle 37\sqrt{3}-6\sqrt{2}

This is the final answer.

Example Question #96 : Simplifying Radicals

\displaystyle 2\sqrt{125}-\sqrt{320}+4\sqrt{180}

Possible Answers:

\displaystyle 26\sqrt{5}

\displaystyle 20\sqrt{5}

\displaystyle 3\sqrt{5}

\displaystyle 12\sqrt{5}

\displaystyle \sqrt{5}

Correct answer:

\displaystyle 26\sqrt{5}

Explanation:

To add or subtract radicals, they must be the same root and have the same number under the radical before combining them. Look for perfect squares that divide into the number under the radicals because those can be simplified.

\displaystyle 2\sqrt{125}-\sqrt{320}+4\sqrt{180}

\displaystyle 2\sqrt{25\cdot 5}-\sqrt{64\cdot 5}+4\sqrt{36\cdot 5}

Take the square roots of each of the perfect squares in these radicals and bring it out of the radical. It will multiply to any coefficient in front of that radical

\displaystyle 2\cdot 5\sqrt{5}-8\sqrt{5}+4\cdot 6\sqrt{5}

\displaystyle 10\sqrt{5}-8\sqrt{5}+24\sqrt{5}

\displaystyle 26\sqrt{5}

Example Question #97 : Simplifying Radicals

Add the radicals, if possible:  \displaystyle \sqrt{50}+\sqrt{125}

Possible Answers:

\displaystyle 10\sqrt5

\displaystyle 5\sqrt{2}+10\sqrt5

\displaystyle 5\sqrt{2}+5\sqrt5

\displaystyle 5\sqrt{7}

Correct answer:

\displaystyle 5\sqrt{2}+5\sqrt5

Explanation:

Use common factors to simplify both radicals.

\displaystyle \sqrt{50}+\sqrt{125} = \sqrt{25\times 2}+\sqrt{25\times 5}

\displaystyle = \sqrt{25}\cdot \sqrt{2}+\sqrt{25}\cdot \sqrt{5}

Simplify the square roots.

The answer is:  \displaystyle 5\sqrt{2}+5\sqrt5

Example Question #98 : Simplifying Radicals

Subtract the radicals if possible:  \displaystyle \sqrt{40}+\sqrt{8}+\sqrt{50}

Possible Answers:

\displaystyle 2\sqrt{10}+7\sqrt2

\displaystyle 2\sqrt{7}+7\sqrt{10}

\displaystyle 13\sqrt2

\displaystyle 5\sqrt{2}+3\sqrt{10}

Correct answer:

\displaystyle 2\sqrt{10}+7\sqrt2

Explanation:

Evaluate each term.  Write out the factors for each radical and simplify.

\displaystyle \sqrt{40} =\sqrt{4\times 10} = \sqrt{4}\cdot \sqrt{10} = 2\sqrt{10}

\displaystyle \sqrt8 = \sqrt4 \cdot \sqrt2 = 2\sqrt2

\displaystyle \sqrt{50} = \sqrt{25}\times \sqrt{2} = 5\sqrt{2}

Add all the simplified radicals.  Combine like terms.

\displaystyle 2\sqrt{10}+ 2\sqrt2+ 5\sqrt2 = 2\sqrt{10}+7\sqrt2

The answer is:  \displaystyle 2\sqrt{10}+7\sqrt2

Learning Tools by Varsity Tutors