Algebra 1 : How to solve one-step equations

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : How To Solve One Step Equations

Solve for \(\displaystyle x\).

\(\displaystyle x+5=6\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 1\)

\(\displaystyle 13\)

\(\displaystyle -1\)

\(\displaystyle 11\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To isolate \(\displaystyle x\), we just subtract \(\displaystyle 5\) on both sides.

The left side will just  be \(\displaystyle x\)

We have 

\(\displaystyle x=6-5=1\)

\(\displaystyle x=1\)

Example Question #22 : How To Solve One Step Equations

Solve for \(\displaystyle x\).

\(\displaystyle x-9=18\)

Possible Answers:

\(\displaystyle 27\)

\(\displaystyle 9\)

\(\displaystyle 19\)

\(\displaystyle 16\)

\(\displaystyle 18\)

Correct answer:

\(\displaystyle 27\)

Explanation:

To isolate \(\displaystyle x\), we just add \(\displaystyle 9\) on both sides.

The left side will just  be \(\displaystyle x\)

We have 

\(\displaystyle x=18+9=27\)

\(\displaystyle x=27\).

Example Question #23 : How To Solve One Step Equations

Solve for \(\displaystyle q\).

\(\displaystyle 12+q=10\)

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle -2\)

\(\displaystyle 2\)

\(\displaystyle 22\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle -2\)

Explanation:

To isolate \(\displaystyle q\), we just subtract \(\displaystyle 12\) on both sides. The left side will just  be \(\displaystyle q\). We have \(\displaystyle q=10-12=-2\).

Remember, to deal with this strange subtraction, compare the values. \(\displaystyle 12\) is greater than \(\displaystyle 10\) and it's negative so the answer must be negative. We would proceed as a normal subtraction but later add the minus sign.

\(\displaystyle q=-2\).

Example Question #24 : How To Solve One Step Equations

Solve for \(\displaystyle q\).

\(\displaystyle q-3=-1\)

Possible Answers:

\(\displaystyle 3\)

\(\displaystyle -2\)

\(\displaystyle 2\)

\(\displaystyle 4\)

\(\displaystyle -4\)

Correct answer:

\(\displaystyle 2\)

Explanation:

To isolate \(\displaystyle q\), we just add \(\displaystyle 3\) on both sides. The left side will just  be \(\displaystyle q\). We have \(\displaystyle q=-1+3=2\).

Remember, to deal with this strange addition, compare the values. \(\displaystyle 3\) is greater than \(\displaystyle 1\) and it's positie so the answer must be positive. We would proceed as a normal subtraction but later add the plus sign which is usually ignored.

\(\displaystyle q=2\).

Example Question #25 : How To Solve One Step Equations

Solve for \(\displaystyle w\).

\(\displaystyle 3w=9\)

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle 1\)

\(\displaystyle 2\)

\(\displaystyle 9\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To isolate \(\displaystyle w\), we just divide \(\displaystyle 3\) on both sides.

The left side will just  be \(\displaystyle w\)

We have 

\(\displaystyle w=\frac{9}{3}=3\)

\(\displaystyle w=3\).

Example Question #26 : How To Solve One Step Equations

Solve for \(\displaystyle w\).

\(\displaystyle 4w=9\)

Possible Answers:

\(\displaystyle \frac{4}{9}\)

\(\displaystyle \frac{3}{2}\)

\(\displaystyle \frac{2}{3}\)

\(\displaystyle 2\)

\(\displaystyle \frac{9}{4}\)

Correct answer:

\(\displaystyle \frac{9}{4}\)

Explanation:

To isolate \(\displaystyle w\), we just divide \(\displaystyle 4\) on both sides.

The left side will just  be \(\displaystyle w\)

We have 

\(\displaystyle w=\frac{9}{4}\)

 

Example Question #27 : How To Solve One Step Equations

Solve for \(\displaystyle w\).

\(\displaystyle \frac{w}{3}=6\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 9\)

\(\displaystyle 18\)

\(\displaystyle 1\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 18\)

Explanation:

To isolate \(\displaystyle w\), we just cross-multiply. 

\(\displaystyle \frac{w}{3}=\frac{6}{1}\)

\(\displaystyle w\cdot 1=6\cdot 3\)

We will have 

\(\displaystyle w=3\cdot 6=18\).

Example Question #28 : How To Solve One Step Equations

Solve for \(\displaystyle w\).

\(\displaystyle \frac{3}{w}=8\)

Possible Answers:

\(\displaystyle 24\)

\(\displaystyle \frac{8}{3}\)

\(\displaystyle 11\)

\(\displaystyle \frac{3}{8}\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle \frac{3}{8}\)

Explanation:

To isolate \(\displaystyle w\), we just cross-multiply. 

\(\displaystyle \frac{3}{w}=\frac{8}{1}\)

\(\displaystyle 3\cdot 1=8\cdot w\)

We will have 

\(\displaystyle 8w=3\).

We divide both sides by \(\displaystyle 8\).

The left side is \(\displaystyle w\). The right side is 

\(\displaystyle w=\frac{3}{8}\)

Example Question #29 : How To Solve One Step Equations

Solve for \(\displaystyle w\).

\(\displaystyle \frac{w}{\frac{1}{2}}=8\)

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 7\)

\(\displaystyle 16\)

\(\displaystyle 4\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 4\)

Explanation:

To isolate \(\displaystyle w\), we just cross-multiply. 

\(\displaystyle \frac{w}{\frac{1}{2}}=\frac{8}{1}\)

\(\displaystyle w\cdot 1=\frac{1}{2}\cdot 8\)

 

We will have 

\(\displaystyle w=\frac{1}{2}\cdot 8=4\).

Example Question #30 : How To Solve One Step Equations

Solve for \(\displaystyle w\).

\(\displaystyle w-8=3+7\)

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle 18\)

\(\displaystyle 12\)

\(\displaystyle 10\)

\(\displaystyle 11\)

Correct answer:

\(\displaystyle 18\)

Explanation:

To isolate \(\displaystyle w\), first we add the right side which is \(\displaystyle 10\).

Then, we add \(\displaystyle 8\) on both sides.

The left we have \(\displaystyle w\).

On the right, we have 

\(\displaystyle w=8+10=18\).

\(\displaystyle w=18\)

Learning Tools by Varsity Tutors