Algebra 1 : How to find the midpoint of a line segment

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : How To Find The Midpoint Of A Line Segment

What is the midpoint of a line with endpoints of \displaystyle (-10,14) and \displaystyle (4,2)?

Possible Answers:

\displaystyle (7,6)

\displaystyle (3,-8)

\displaystyle (-7,-6)

\displaystyle (-3,8)

None of the other answers

Correct answer:

\displaystyle (-3,8)

Explanation:

To find the midpoint, use the midpoint formula: \displaystyle (\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}). Plug in the two ordered pairs to the formula to get: \displaystyle (\frac{-10+4}{2},\frac{14+2}{2}). Doing this will give you a solution of \displaystyle (-3,8).

Example Question #4131 : Algebra 1

A line segment on the coordinate plane has endpoints \displaystyle (-5,-4) and \displaystyle (-3,10) . Which quadrant or axis contains its midpoint?

Possible Answers:

The \displaystyle x-axis

Quadrant I

Quadrant IV

Quadrant II

Quadrant III

Correct answer:

Quadrant II

Explanation:

The \displaystyle x-coordinate of the midpoint is 

\displaystyle \frac{-5 + (-3) }{2} = -4,

which is negative.

The \displaystyle y-coordinate of the midpoint is 

\displaystyle \frac{-4+10}{2} =3,

which is positive.

Since the midpoint has a negative \displaystyle x-coordinate and a positive \displaystyle y-coordinate, the midpoint is in Quadrant II.

Example Question #11 : How To Find The Midpoint Of A Line Segment

A line segment on the coordinate plane has endpoints \displaystyle (5,-4) and \displaystyle (-3,7) . Which quadrant or axis contains its midpoint?

Possible Answers:

Quadrant IV

The \displaystyle x-axis

Quadrant I

Quadrant II

Quadrant III

Correct answer:

Quadrant I

Explanation:

The \displaystyle x-coordinate of the midpoint is 

\displaystyle \frac{5 + (-3) }{2} = 1,

which is positive.

The \displaystyle y-coordinate of the midpoint is 

\displaystyle \frac{-4+7}{2} = \frac{3}{2},

which is positive.

Since both coordinates are positive, the midpoint is in Quadrant I.

Example Question #14 : How To Find The Midpoint Of A Line Segment

Determine the midpoint between the points \displaystyle (-1, 5) and \displaystyle (-7, 3) 

 

Possible Answers:

\displaystyle (-8, 8)

\displaystyle (4, -4)

\displaystyle (-4, 4)

\displaystyle (-2, 4)

\displaystyle (-5, 4)

Correct answer:

\displaystyle (-4, 4)

Explanation:

To find the midpoint you are actually finding the average of the two \displaystyle x values and the average of the two \displaystyle y values. 

Midpoint formula: \displaystyle (\frac{x_{1}+x_{2}}{2}), (\frac{y_{1}+y_{2}}{2})

\displaystyle (-1, 5)\displaystyle (-7, 3) so we plug our points in to the equation, 

\displaystyle (\frac{-1+(-7)}{2}, \frac{5+3}{2})

Simplify and divide

\displaystyle (\frac{-8}{2},\frac{8}{2})

Midpoint: \displaystyle (-4,4)

Example Question #851 : Functions And Lines

Find the midpoint of the line segment with endpoints \displaystyle (1.6, 7.3) and \displaystyle ( -1.4, 4.7).

Possible Answers:

\displaystyle (0.1, 6)

\displaystyle \left ( 6, 0.1\right )

\displaystyle \left ( 4.45, 1.65\right )

\displaystyle (-1.5,-6)

\displaystyle (1.5, 6)

Correct answer:

\displaystyle (0.1, 6)

Explanation:

Use the midpoint formula:

 

Substitute:

\displaystyle \frac{x_{1}+x_{2}}{2} =\frac{1.6+(-1.4)}{2} = \frac{0.2}{2} = 0.1

The midpoint is \displaystyle (0.1, 6)

Example Question #16 : How To Find The Midpoint Of A Line Segment

Find the midpoint of the line segment with endpoints \displaystyle \left ( \frac{1}{3}, \frac{5}{6} \right ) and \displaystyle \left ( -\frac{5}{6},\frac{2}{3} \right ).

Possible Answers:

\displaystyle \left ( -\frac{7 }{12}, \frac{1 }{12} \right )

\displaystyle \left ( \frac{1 }{4}, \frac{3 }{4} \right )

\displaystyle \left ( \frac{7 }{12}, -\frac{1 }{12} \right )

\displaystyle \left ( -\frac{1 }{4}, \frac{3 }{4} \right )

\displaystyle \left ( -\frac{1 }{2}, \frac{3 }{2} \right )

Correct answer:

\displaystyle \left ( -\frac{1 }{4}, \frac{3 }{4} \right )

Explanation:

Use the midpoint formula:

 

Substitute:

\displaystyle \frac{x_{1}+x_{2}}{2} = \frac{ \frac{1}{3} + \left (-\frac{5}{6} \right )}{2}= \frac{ \frac{2}{6} - \frac{5}{6} }{2}= \frac{-\frac{3}{6}}{2}= \frac{-\frac{1}{2}}{2} = -\frac{1}{2} \div 2 = -\frac{1}{2} \cdot\frac{1}{2} =-\frac{1}{4}

 

\displaystyle \frac{y_{1}+y_{2}}{2} = \frac{ \frac{5}{6} + \frac{2}{3}}{2} = \frac{ \frac{5}{6} + \frac{4}{6}}{2} = \frac{ \frac{9}{6} }{2}= \frac{ \frac{3}{2} }{2} = \frac{3}{2} \div 2 = \frac{3}{2} \cdot \frac{1}{2} = \frac{3}{4}

The midpoint is \displaystyle \left ( -\frac{1 }{4}, \frac{3 }{4} \right ).

Example Question #4132 : Algebra 1

What is the midpoint of a line with endpoints of \displaystyle (9,-3) and \displaystyle (-1,5)?

Possible Answers:

\displaystyle (-4,-1)

\displaystyle (4,1)

\displaystyle (1,4)

\displaystyle (4,-1)

\displaystyle (-1,4)

Correct answer:

\displaystyle (4,1)

Explanation:

To find the midpoint, you can use the midpoint formula: \displaystyle (\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}).

Plug in \displaystyle (9,-3) and \displaystyle (-1, 5) into the formula: \displaystyle (\frac{9+-1}{2},\frac{-3+5}{2}) to get \displaystyle (4,1).

Example Question #18 : How To Find The Midpoint Of A Line Segment

Find the midpoint of the line segment with endpoints \displaystyle (3.6, 9.1) and \displaystyle (7.2, -1.5).

Possible Answers:

\displaystyle (5.4, 3.8)

\displaystyle \left (-1.8, 5.3 \right )

\displaystyle (3.8, 5.4)

\displaystyle \left (1.8, -5.3 \right )

\displaystyle \left (6.35, 2.85 \right )

\displaystyle \left (6.35, 2.85 \right )

\displaystyle \left (1.8, -5.3 \right )

\displaystyle \left (-1.8, 5.3 \right )

Correct answer:

\displaystyle (5.4, 3.8)

Explanation:

Use the midpoint formula:

 

Substitute:

\displaystyle \frac{x_{1}+x_{2}}{2} =\frac{3.6+7.2}{2} = \frac{10.8}{2} = 5.4

The midpoint is \displaystyle (5.4, 3.8)

Example Question #12 : How To Find The Midpoint Of A Line Segment

What is the midpoint of a line with endpoints (2,5) and (18,-9)?

Possible Answers:

\displaystyle (6,0)

\displaystyle (-2,10)

\displaystyle (-4,20)

\displaystyle (20,-4)

\displaystyle (10,-2)

Correct answer:

\displaystyle (10,-2)

Explanation:

To find the midpoint of the line, plug the endpoints into the distance formula: \displaystyle (\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}). This will give you \displaystyle (\frac{2+18}{2},\frac{5+-9}{2}), or a midpoint of \displaystyle (10,-2).

Example Question #13 : How To Find The Midpoint Of A Line Segment

What is the midpoint of a line with endpoints of (12,3) and (28,9)?

Possible Answers:

\displaystyle (8,3)

\displaystyle (12, 8)

\displaystyle (8,6)

\displaystyle (20,3)

\displaystyle (20,6)

Correct answer:

\displaystyle (20,6)

Explanation:

To find the midpoint of a line, plug the endpoints into the midpoint formula: 

\displaystyle \left(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}\right)

This gives you 

\displaystyle \left(\frac{12+28}{2},\frac{3+9}{2}\right)

or 

\displaystyle (20,6)

Learning Tools by Varsity Tutors