Algebra 1 : Functions and Lines

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : How To Find Slope Of A Line

Possible Answers:

\displaystyle \frac{3}{4}

\displaystyle -\frac{4}{3}

\displaystyle -\frac{3}{4}

\displaystyle \frac{13}{3}

\displaystyle \frac{4}{3}

Correct answer:

\displaystyle \frac{4}{3}

Explanation:

\displaystyle 3y-4x=13

\displaystyle 3y=4x+13

Example Question #2 : How To Find Slope Of A Line

Which of the following is an example of an equation written in slope-intercept form?

Possible Answers:

\displaystyle -y=x-4

\displaystyle y=-x+4

\displaystyle y+x-4=0

\displaystyle y+x=4

Correct answer:

\displaystyle y=-x+4

Explanation:

Slope intercept form is \displaystyle y=mx+b, where \displaystyle m is the slope and \displaystyle b is the y-intercept.

\displaystyle y=-x+4 is the correct answer. The line has a slope of \displaystyle -1 and a y-intercept equal to \displaystyle 4.

Example Question #1 : How To Find Slope Of A Line

If (1,2) and (4,6) are on the same line, what is the slope of the line?

Possible Answers:

\displaystyle 2

\displaystyle 1

\displaystyle \frac{3}{4}

\displaystyle \frac{4}{3}

\displaystyle \frac{1}{2}

 

Correct answer:

\displaystyle \frac{4}{3}

Explanation:

\displaystyle m=slope=\frac{\Delta y}{\Delta x}=\frac{\left ( y_{2}-y_{1}\right )}{\left ( x_{2}-x_{1}\right )}=

\displaystyle \frac{\left ( 6-2\right )}{\left ( 4-1\right )}=\frac{4}{3}

Example Question #1 : How To Find Slope Of A Line

The equation of a line is:

\displaystyle 5x+25y=14

What is the slope of the line?

Possible Answers:

\displaystyle \frac{14}{25}

 

\displaystyle \frac{1}{5}

 

\displaystyle -\frac{14}{25}

\displaystyle -\frac{1}{5}

\displaystyle 5

Correct answer:

\displaystyle -\frac{1}{5}

Explanation:

Solve the equation for \displaystyle y=mx+b

where \displaystyle m is the slope of the line:

\displaystyle 5x+25y=14

\displaystyle 25y=-5x+14

\displaystyle y=-\left ( \frac{5}{25} \right )x+\frac{14}{25}=-\left ( \frac{1}{5} \right )x+\frac{14}{25}

\displaystyle Slope=-\frac{1}{5}

 

Example Question #3 : How To Find Slope Of A Line

A line passes through the points \displaystyle (-1,4) and \displaystyle (4,-9).  What is its slope?

Possible Answers:

\displaystyle \frac{5}{13}

\displaystyle -\frac{13}{5}

-\displaystyle -\frac{5}{13}

\displaystyle \frac{13}{5}

Correct answer:

\displaystyle -\frac{13}{5}

Explanation:

The slope is the rise over the run.  The line drops in \displaystyle y-coordinates by 13 while gaining 5 in the \displaystyle x-coordinates.

Example Question #1 : How To Find Slope Of A Line

What is the slope of the line \displaystyle 2y-4x=12?

Possible Answers:

\displaystyle 2

\displaystyle 6

\displaystyle 2

\displaystyle -4

\displaystyle 4

Correct answer:

\displaystyle 2

Explanation:

You can rearrange \displaystyle 2y-4x=12 to get an equation resembling the \displaystyle y=mx+b formula by isolating the \displaystyle y. This gives you the equation \displaystyle y=2x+6. The slope of the equation is 2 (the \displaystyle m within the \displaystyle y=mx+b equation).

Example Question #171 : Equations Of Lines

What is the slope of the line \displaystyle 3y-9x=15?

Possible Answers:

\displaystyle 3

\displaystyle -9

\displaystyle 5

\displaystyle 9

\displaystyle -3

Correct answer:

\displaystyle 3

Explanation:

To easily find the slope of the line, you can rearrange the equation to the \displaystyle y=mx+b form. To do this, isolate the \displaystyle y by moving the \displaystyle x to the other side of the equation. This gives you \displaystyle 3y=9x+15. Then, divide both sides by 3 to isolate the \displaystyle y, which leaves you with \displaystyle y=3x+5. Now, the equation is in the \displaystyle y=mx+b form, and you can easily see that the slope is 3.

Example Question #11 : How To Find Slope Of A Line

What is the slope of the line depicted by the equation?

\displaystyle 6x+3y=15

Possible Answers:

\displaystyle m=-2

\displaystyle m=\frac{2}{5}

\displaystyle m=\frac{5}{2}

\displaystyle m=-\frac{1}{2}

Correct answer:

\displaystyle m=-2

Explanation:

The equation is written in standard from: \displaystyle \small Ax+By=C. In this format, the slope is \displaystyle \small -\frac{A}{B}.

\displaystyle 6x+3y=15

In our equation, \displaystyle \small A=6 and \displaystyle \small B=3.

\displaystyle \small m=-\frac{A}{B}=-\frac{6}{3}

\displaystyle \small -\frac{6}{3}=-2

Example Question #3701 : Algebra 1

Find the slope of the line defined by the equation \displaystyle 4x - 6y = 15.

Possible Answers:

\displaystyle -24

\displaystyle \frac{2}{3}

\displaystyle \frac{3}{2}

\displaystyle -\frac{2}{3}

\displaystyle -\frac{3}{2}

Correct answer:

\displaystyle \frac{2}{3}

Explanation:

\displaystyle 4x - 6y = 15

\displaystyle -4x + 4x - 6y = -4x + 15

\displaystyle - 6y = -4x + 15

\displaystyle - 6y \div (-6)=\left ( -4x + 15 \right )\div (-6)

\displaystyle y =\frac{2}{3 }x- \frac{5}{2}

The slope is the coefficient of \displaystyle x\displaystyle m = \frac{2}{3}

Example Question #3702 : Algebra 1

Find the slope of the line that includes points \displaystyle (5,-4) and \displaystyle (8,-2).

Possible Answers:

\displaystyle \frac{3}{2}

\displaystyle \frac{2}{3}

\displaystyle \frac{6}{13}

\displaystyle \frac{1}{6}

\displaystyle 6

Correct answer:

\displaystyle \frac{2}{3}

Explanation:

Use the slope formula: 

\displaystyle m = \frac{y_{2}-y_{1}}{x_{2}-x_{1}} = \frac{-2-(-4)}{8-5} = \frac{2}{3}

Learning Tools by Varsity Tutors