All Algebra 1 Resources
Example Questions
Example Question #211 : Functions And Lines
Does the equation below represent a direct variation? If it does, find the constant of variation.
No,
Yes,
Yes,
No,
Yes,
Yes,
Direct Variation is a relationship that can be represented by a function in the form
, where
is the constant of variation for a direct variation. is the coefficient of .
The equation is in the form , so the equation is a direct variation.
The constant of variation or is
Therefore, the answer is,
Yes it is a direct variation, with a direct variation of
Example Question #212 : Functions And Lines
Suppose and , and that is in direct proportion with . What is the value of proportionality?
The general formula for direct proportionality is
where is our constant of proportionality. From here we can plug in the relevant values for and to get
Solving for requires that we divide both sides of the equation by , yielding
Example Question #5 : How To Find Direct Variation
The cost of a catering company varies directly with the number of people attending. If the cost is $100 when 20 people attend the party, find the constant of variation.
Because the cost varies directly with the number of people attending, we have the equation
Where is the cost and is the number of people attending.
We solve for , the constant of variation, by plugging in and .
And by dividing by 20 on both sides
Yields
Example Question #211 : Functions And Lines
The amount of money Billy earns is directly proportional to his hours worked. Suppose he earns every eight hours of work. What is the minimum hours Billy must work in order to exceed ? Round to the nearest integer.
Write the formula for direct proportionality.
Let:
Substitute twelve dollars and eight hours into this equation to solve for .
Divide by eight on both sides.
Substitute back into the formula.
To find out the minimum number of hours Billy must work to make , substitute into and solve for .
Multiply by two thirds on both sides.
Simplify both sides.
Billy must work at least hours to earn as much required.
Example Question #1 : How To Find The Nth Term Of An Arithmetic Sequence
The first term of an arithmetic sequence is ; the fifth term is . What is the second term?
To find the common difference , use the formula .
For us, is and is .
Now we can solve for .
Add the common difference to the first term to get the second term.
Example Question #1 : How To Find The Nth Term Of An Arithmetic Sequence
The sum of the first three terms of an arithmetic sequence is 111 and the fourth term is 49. What is the first term?
It cannot be determined from the information given.
Let be the common difference, and let be the second term. The first three terms are, in order, .
The sum of the first three terms is .
Now we know that the second term is 37. The fourth term is the second term plus twice the common difference: . Since the second and fourth terms are 37 and 49, respectively, we can solve for the common difference.
The common difference is 6. The first term is .
Example Question #1 : How To Find The Nth Term Of An Arithmetic Sequence
An arithmetic sequence begins with . If is the first term in the sequence, find the 31st term.
For arithmetic sequences, we use the formula , where is the term we are trying to find, is the first term, and is the difference between consecutive terms. In this case, and . So, we can write the formula as , and .
Example Question #1 : How To Find The Nth Term Of An Arithmetic Sequence
The fourth and tenth terms of an arithmetic sequence are 372 and 888, respectively. What is the first term?
Let be the common difference of the sequence. Then , or, equivalently,
, or equivalently,
Example Question #2 : How To Find The Nth Term Of An Arithmetic Sequence
The ninth and tenth terms of an arithmetic sequence are, respectively, 87 and 99. What is its first term?
The common difference of the sequence is the difference of the tenth and ninth terms: .
The ninth term of an arithmetic sequence with first term and common difference is , so we set this equal to 87, set , and solve:
Example Question #1 : How To Find The Nth Term Of An Arithmetic Sequence
The eighth and tenth terms of an arithmetic sequence are, respectively, 87 and 99. What is its first term?
The eighth and tenth terms of the sequence are and , where is the first term and is the common difference. We can find the common difference by subtracting the tenth and eighth terms and solving for :
Now set eighth term equal to 87, set , and solve:
Certified Tutor
Certified Tutor