Algebra 1 : Algebra 1

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #501 : Linear Equations

Solve for \displaystyle x.

\displaystyle x-76.19=21.89

Possible Answers:

\displaystyle 100.21

\displaystyle 98.08

\displaystyle 46.82

\displaystyle 38.02

\displaystyle 54.30

Correct answer:

\displaystyle 98.08

Explanation:

\displaystyle x-76.19=21.89 

Add \displaystyle 76.19 to both sides.

\displaystyle x=98.08

Example Question #501 : Linear Equations

Solve for \displaystyle x.

\displaystyle x-102.88=-90.23

Possible Answers:

\displaystyle -10.23

\displaystyle -11.55

\displaystyle -15.75

\displaystyle 14.96

\displaystyle 12.65

Correct answer:

\displaystyle 12.65

Explanation:

\displaystyle x-102.88=-90.23 

Add \displaystyle 102.88 to both sides. Since \displaystyle 102.88 is greater than \displaystyle 90.23 and is positive, our answer is positive. We treat as a subtraction problem.

\displaystyle x=12.65

Example Question #502 : Linear Equations

Solve for \displaystyle x.

\displaystyle x-1024.76=-1267.98

Possible Answers:

\displaystyle 483.93

\displaystyle -243.22

\displaystyle -824.22

\displaystyle -321.22

\displaystyle 342.10

Correct answer:

\displaystyle -243.22

Explanation:

\displaystyle x-1024.76=-1267.98 

Add \displaystyle 1024.76 to both sides. Since \displaystyle 1267.98 is greater than  \displaystyle 1024.76 and is negative, our answer is negative. We treat as a subtraction problem.

\displaystyle x=-243.22

Example Question #501 : How To Solve One Step Equations

Solve for \displaystyle x.

\displaystyle 2.3x=45.54

Possible Answers:

\displaystyle 19.9

\displaystyle 18.8

\displaystyle 17.7

\displaystyle 19.6

\displaystyle 19.8

Correct answer:

\displaystyle 19.8

Explanation:

\displaystyle 2.3x=45.54 

Divide by \displaystyle 2.3 on both sides.

\displaystyle x=19.8 

Example Question #504 : Linear Equations

Solve for \displaystyle x.

\displaystyle 9.6x=-43.2

Possible Answers:

\displaystyle 5.1

\displaystyle -4.7

\displaystyle 7.2

\displaystyle -4.5

\displaystyle 4.6

Correct answer:

\displaystyle -4.5

Explanation:

\displaystyle 9.6x=-43.2 

Divide by \displaystyle 9.6 on both sides. When dividing a negative number by a positive number, our answer is negative.

\displaystyle x=-4.5

Example Question #502 : Linear Equations

Solve for \displaystyle x.

\displaystyle -12.1x=-107.69

Possible Answers:

\displaystyle 8.9

\displaystyle -9

\displaystyle -7.9

\displaystyle -8.9

\displaystyle 7.9

Correct answer:

\displaystyle 8.9

Explanation:

\displaystyle -12.1x=-107.69 

Divide by \displaystyle -12.1 on both sides. When dividing a negative number by another negative number, our answer is positive.

\displaystyle x=8.9

Example Question #505 : Linear Equations

Solve for \displaystyle x.

\displaystyle \frac{x}{14.2}=7.8

Possible Answers:

\displaystyle 108.66

\displaystyle 120.86

\displaystyle 99.66

\displaystyle 110.76

\displaystyle 124.23

Correct answer:

\displaystyle 110.76

Explanation:

\displaystyle \frac{x}{14.2}=7.8 

Multiply by \displaystyle 14.2 on both sides.

\displaystyle x=110.76

Example Question #506 : Linear Equations

Solve for \displaystyle x.

\displaystyle \frac{x}{13.5}=-9.7

Possible Answers:

\displaystyle 116.23

\displaystyle 131.25

\displaystyle -132.55

\displaystyle -130.95

\displaystyle 129.95

Correct answer:

\displaystyle -130.95

Explanation:

\displaystyle \frac{x}{13.5}=-9.7 

Multiply by \displaystyle 13.5 on both sides. When multiplying a negative number by a positive number, answer is negative.

\displaystyle x=-130.95

Example Question #507 : Linear Equations

Solve for \displaystyle x.

\displaystyle \frac{x}{-19.8}=-6.5

Possible Answers:

\displaystyle 198.2

\displaystyle 131.6

\displaystyle 156.7

\displaystyle 128.7

\displaystyle 142.8

Correct answer:

\displaystyle 128.7

Explanation:

\displaystyle \frac{x}{-19.8}=-6.5 

Multiply both sides by \displaystyle -19.8. When multiplying with a negative number by another negative number, the answer is positive.

\displaystyle x=128.7

Example Question #508 : Linear Equations

Solve the following equation:  \displaystyle 6x = \frac{5}{7} 

Possible Answers:

\displaystyle \frac{30}{7}

\displaystyle \frac{13}{5}

\displaystyle \frac{5}{13}

\displaystyle \frac{42}{5}

\displaystyle \frac{5}{42}

Correct answer:

\displaystyle \frac{5}{42}

Explanation:

In order to isolate the x-variable, multiply both sides of the equation by the reciprocal of the number in front of the x.  

\displaystyle 6x \cdot \frac{1}{6} = \frac{5}{7}\cdot \frac{1}{6}

Simplify both sides of the equation.

\displaystyle x=\frac{5}{42}

The answer is:  \displaystyle \frac{5}{42}

Learning Tools by Varsity Tutors