ACT Math : Outcomes

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #41 : Probability

Jen's pencil case contains  pencils,  black pens,  blue pens, and  erasers. If Jen picks two items in a row (without replacing the first item she picks), what is the probability that she will pick a pen and then an eraser?

Possible Answers:

Correct answer:

Explanation:

There are a total of  items in the pencil case. On the first try, the probability of Jen's picking a pen is , because there are  pens in the case. On the second pick, there is now one less item in the case (because Jen does not replace what she picked the first time). So now, there are  items.  The probability of picking an eraser is .

To find the probability of Jen picking a pen and then an eraser:

Example Question #42 : How To Find The Probability Of An Outcome

Karen has two decks of playing cards, each of which contains fifty-two cards. Karen combines the two decks. What is the probability of drawing a black ten or a black five from the combined deck?

Possible Answers:

Correct answer:

Explanation:

Karen has two full decks of cards, this means there are cards total. In each deck there are two black ten cards and two black five cards. Since there are two decks, this means there are eight cards that are either a black ten or a black five. Therefore, the probability of choosing a black five or a black ten card is:

Example Question #1821 : Problem Solving Questions

An auto insurer underwrites its 60 customers and classifies them in 3 mutually exclusive risk classes. 15 of the customers are in the high-risk class, 35 are in the moderate-risk class, and 10 are in the low-risk class. What is the probability that a randomly selected customer will be in the moderate- or high-risk class?

Possible Answers:

Correct answer:

Explanation:

The probability that a randomly selected customer is in the moderate- or high-risk class is simply the sum of the number of clients in the moderate-risk class and the number of clients in the high-risk class divided by the  total number of clients:

This is also equivalent to just summing up the probability of being in the high-risk class and the probability of being in the moderate-risk class. Since the 3 classes are mutually exclusive, we do not have to worry about subtracting the probability of mutual elements.

Example Question #51 : Calculating Discrete Probability

Presented with a deck of fifty-two cards (no jokers), what is the probability of drawing either a face card or a spade?

Possible Answers:

Correct answer:

Explanation:

A face card constitutes a Jack, Queen, or King, and there are twelve in a deck, so the probability of drawing a face card is .

There are thirteen spades in the deck, so the probability of drawing a spade is .

Keep in mind that there are also three cards that fit into both categories: the Jack, Queen, and King of Spades; the probability of drawing one is 

Thus the probability of drawing a face card or a spade is:

 

Example Question #44 : Probability

A coin is flipped four times. What is the probability of getting heads at least three times?

Possible Answers:

Correct answer:

Explanation:

Since this problem deals with a probability with two potential outcomes, it is a binomial distribution, and so the probability of an event is given as:

Where  is the number of events,  is the number of "successes" (in this case, a "heads" outcome), and  is the probability of success (in this case, fifty percent).

Per the question, we're looking for the probability of at least three heads; three head flips or four head flips would satisfy this:

Thus the probability of three or more flips is:

Example Question #41 : Probability

Rolling a four-sided dice, what is the probability of rolling a  three times out of four?

Possible Answers:

Correct answer:

Explanation:

Since this problem deals with a probability with two potential outcomes, it is a binomial distribution, and so the probability of an event is given as:

Where  is the number of events,  is the number of "successes" (in this case rolling a four), and  is the probability of success (one in four).

Example Question #1541 : Psat Mathematics

A coin is flipped seven times. What is the probability of getting heads six or fewer times?

Possible Answers:

Correct answer:

Explanation:

Since this problem deals with a probability with two potential outcomes, it is a binomial distribution, and so the probability of an event is given as:

Where  is the number of events,  is the number of "successes" (in this case, a "heads" outcome), and  is the probability of success (in this case, fifty percent).

One approach is to calculate the probability of flipping no heads, one head, two heads, etc., all the way to six heads, and adding those probabilities together, but that would be time consuming. Rather, calculate the probability of flipping seven heads. The complement to that would then be the sum of all other flip probabilities, which is what the problem calls for:

Therefore, the probability of six or fewer heads is:

Example Question #1548 : Psat Mathematics

Set A: 

Set B: 

One letter is picked from Set A and Set B. What is the probability of picking two consonants?

Possible Answers:

Correct answer:

Explanation:

Set A: 

Set B: 

In Set A, there are five consonants out of a total of seven letters, so the probability of drawing a consonant from Set A is .

In Set B, there are three consonants out of a total of six letters, so the probability of drawing a consonant from Set B is .

 

The question asks for the probability of drawing two consonants, meaning the probability of drawing a constant from Set A and Set B, so probability of the intersection of the two events is the product of the two probabilities:

 

Example Question #52 : Calculating Discrete Probability

Set A: 

Set B: 

One letter is picked from Set A and Set B. What is the probability of picking at least one consonant?

Possible Answers:

Correct answer:

Explanation:

Set A: 

Set B: 

In Set A, there are five consonants out of a total of seven letters, so the probability of drawing a consonant from Set A is .

In Set B, there are three consonants out of a total of six letters, so the probability of drawing a consonant from Set B is .

The question asks for the probability of drawing at least one consonant, which can be interpreted as a union of events. To calculate the probability of a union, sum the probability of each event and subtract the intersection:

The interesection is:

So, we can find the probability of drawing at least one consonant:

 

Example Question #42 : Data Analysis / Probablility

Set A: 

Set B: 

One letter is drawn from Set A, and one from Set B. What is the probability of drawing a matching pair of letters?

Possible Answers:

Correct answer:

Explanation:

Set A: 

Set B: 

Between Set A and Set B, there are two potential matching pairs of letters: AA and XX. The amount of possible combinations is the number of values in Set A, multiplied by the number of values in Set B, .

Therefore, the probability of drawing a matching set is:

Learning Tools by Varsity Tutors