All ACT Math Resources
Example Questions
Example Question #1 : How To Graph A Function
Suppose .
To obtain the graph of , shift the graph a distance of units .
Up and right
To the left
To the right
Upwards
Downwards
Upwards
There are four shifts of the graph y = f(x):
y = f(x) + c shifts the graph c units upwards.
y = f(x) – c shifts the graph c units downwards.
y = f(x + c) shifts the graph c units to the left.
y = f(x – c) shifts the graph c units to the right.
Example Question #11 : How To Graph A Function
Which of the following graphs does NOT represent a function?
All of the graphs are functions.
This question relies on both the vertical-line test and the definition of a function. We need to use the vertical-line test to determine which of the graphs is not a function (i.e. the graph that has more than one output for a given input). The vertical-line test states that a graph represents a function when a vertical line can be drawn at every point in the graph and only intersect it at one point; thus, if a vertical line is drawn in a graph and it intersects that graph at more than one point, then the graph is not a function. The circle is the only answer choice that fails the vertical-line test, and so it is not a function.
Certified Tutor