All ACT Math Resources
Example Questions
Example Question #96 : Algebra
What is the slope of the line perpendicular to ?
To begin, it is easiest to find the slope of a line by putting it into the form . is the slope, so you can immediately find this once you have the format correct. Thus, solve our equation for :
Now, recall that perpendicular lines have slopes of opposite sign and reciprocal numerical value. Thus, if our slope is , its perpendicular paired line will have a slope of .
Example Question #96 : Algebra
What is the slope of the line defined by the equation ?
The easiest way to find the slope of a line based on its equation is to put it into the form . In this form, you know that is the slope.
Start with your original equation .
Now, subtract from both sides:
Next, subtract from both sides:
Finally, divide by :
This is the same as:
Thus, the slope is .
Example Question #97 : Algebra
What is the slope of the line represented by the equation ?
The slope of an equation can be calculated by simplifying the equation to the slope-intercept form , where m=slope.
Since , we can solve for y. In shifting the 5 to the other side, we are left with .
This can be further simplified to
, leaving us with the slope intercept form.
In this scenario, , so slope .
Example Question #31 : Lines
Find the slope of the line 6X – 2Y = 14
12
-3
3
-6
3
Put the equation in slope-intercept form:
y = mx + b
-2y = -6x +14
y = 3x – 7
The slope of the line is represented by M; therefore the slope of the line is 3.
Certified Tutor
Certified Tutor