ACT Math : How to find a reference angle

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Find A Reference Angle

Which of the following is equivalent to cot(θ)sec(θ)sin(θ)

 

Possible Answers:

cot(θ)

0

–sec(θ)

tan(θ)

1

Correct answer:

1

Explanation:

The first thing to do is to breakdown the meaning of each trig function, cot = cos/sin, sec = 1/cos, and sin = sin. Then put these back into the function and simplify if possible, so then (cos (Θ)/sin (Θ))*(1/cos (Θ))*(sin (Θ)) = (cos (Θ)*sin(Θ))/(sin (Θ)*cos(Θ)) = 1, since they all cancel out. 

Example Question #2 : Reference Angles

Using trigonometry identities, simplify sinθcos2θ – sinθ

Possible Answers:

cos2θsinθ

–sin3θ

None of these answers are correct

sin2θcosθ

cos3θ

Correct answer:

–sin3θ

Explanation:

Factor the expression to get sinθ(cos2θ – 1). 

The trig identity cos2θ + sin2θ = 1 can be reworked to becomes cos2θ – 1 = –sinθ resulting in the simplification of –sin3θ.

Example Question #2 : How To Find A Reference Angle

Using trig identities, simplify sinθ + cotθcosθ

Possible Answers:

sin2θ

cos2θ

tanθ

cscθ

secθ

Correct answer:

cscθ

Explanation:

Cotθ can be written as cosθ/sinθ, which results in sinθ + cos2θ/sinθ.

Combining to get a single fraction results in (sin2θ + cos2θ)/sinθ. 

Knowing that sin2θ + cos2θ = 1, we get 1/sinθ, which can be written as cscθ.

Example Question #4 : Reference Angles

Simplify sec4Θ – tan4Θ.

Possible Answers:

sinΘ + cosΘ

secΘ + sinΘ

sec2Θ + tan2Θ

tan2Θ – sin2Θ

cosΘ – sinΘ

Correct answer:

sec2Θ + tan2Θ

Explanation:

Factor using the difference of two squares:  a2 – b2 = (a + b)(a – b)

The identity 1 + tan2Θ = sec2Θ which can be rewritten as 1 = sec2Θ – tan2Θ

So sec4Θ – tan4Θ = (sec2Θ + tan2Θ)(sec2Θ – tan2Θ) = (sec2Θ + tan2Θ)(1) = sec2Θ + tan2Θ

Example Question #1 : How To Find A Reference Angle

Evaluate the expression below.

\(\displaystyle sin(45^o) + cot(45^o)\)

Possible Answers:

\frac{2 + \sqrt{2}}{2}\(\displaystyle \frac{2 + \sqrt{2}}{2}\)

\frac{1 + \sqrt{2}}{2}\(\displaystyle \frac{1 + \sqrt{2}}{2}\)

\sqrt{2}\(\displaystyle \sqrt{2}\)

\frac{2 + \sqrt{3}}{2}\(\displaystyle \frac{2 + \sqrt{3}}{2}\)

\frac{1 + \sqrt{3}}{2}\(\displaystyle \frac{1 + \sqrt{3}}{2}\)

Correct answer:

\frac{2 + \sqrt{2}}{2}\(\displaystyle \frac{2 + \sqrt{2}}{2}\)

Explanation:

At \(\displaystyle 45^o\), sine and cosine have the same value.

\(\displaystyle sin(45^o)=cos(45^o)=\frac{\sqrt{2}}{2}\)

Cotangent is given by \(\displaystyle \frac{cos}{sin}\).

\(\displaystyle cot(45^o=\frac{cos(45^o)}{sin(45^o)})=\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1\)

Now we can evaluate the expression.

\(\displaystyle sin(45^o)+cot(45^o)=(\frac{\sqrt{2}}{2})+1=(\frac{\sqrt{2}}{2})+\frac{2}{2}=\frac{\sqrt{2}+2}{2}\)

Example Question #6 : Reference Angles

What is the reference angle of an angle that measures 3510 in standard  position?

 

 

Possible Answers:

109

90

351

369

Correct answer:

90

Explanation:

3600 – 3510 = 90

 

 

 

 

 

Example Question #7 : Reference Angles

Simplify the following expression:

\(\displaystyle \frac{sin\theta}{cot\theta sec\theta}\)

 

 

Possible Answers:

None of the answers are correct

tanΘ

cscΘ

sin2Θ

cos2Θ

Correct answer:

sin2Θ

Explanation:

Convert cotΘ and secΘ to sinΘ and cosΘ and simplify the resulting complex fraction.

cotΘ =    cosΘ             secΘ = 1

              sinΘ               cosΘ

Example Question #2 : How To Find A Reference Angle

What is the reference angle for \(\displaystyle 855^{\circ}\)?

Possible Answers:

\(\displaystyle 495^{\circ}\)

\(\displaystyle 55^{\circ}\)

\(\displaystyle 360^{\circ}\)

\(\displaystyle 720^{\circ}\)

\(\displaystyle 45^{\circ}\)

Correct answer:

\(\displaystyle 45^{\circ}\)

Explanation:

The reference angle is between \(\displaystyle 0^o\) and \(\displaystyle 90^{\circ}\), starting on the positive \(\displaystyle x\)-axis and rotating in a counter-clockwise manor.

To find the reference angle, we subtract \(\displaystyle 360^o\) for each complete revolution until we get a positive number less than \(\displaystyle 360^o\).

\(\displaystyle 855 - 360 = 495\)

\(\displaystyle 495 - 360 = 135\)

\(\displaystyle 855^o\) is equal to two complete revolutions, plus a \(\displaystyle 135^{\circ}\) angle. Since \(\displaystyle 135^{\circ}\) is in Quadrant II, we subtract it from \(\displaystyle 180^{\circ}\) to get our reference angle:

\(\displaystyle 180-135=45^{\circ}\)

Example Question #5 : How To Find A Reference Angle

Unit_circle

In the unit circle above, if \(\displaystyle \Theta =30^{\circ}\), what are the coordinates of \(\displaystyle (X,Y)\)?

Possible Answers:

\(\displaystyle \left (\frac{\sqrt{3}}{2},\frac{1}{2} \right )\)

\(\displaystyle \left (\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{2} \right )\)

\(\displaystyle \left (\frac{1}{2},\frac{\sqrt{3}}{2} \right )\)

\(\displaystyle \left (1,\frac{1}{2} \right )\)

\(\displaystyle \left (\frac{1}{2},\frac{1}{2} \right )\)

Correct answer:

\(\displaystyle \left (\frac{\sqrt{3}}{2},\frac{1}{2} \right )\)

Explanation:

On the unit circle, (X,Y) = (cos Θ, sin Θ).

(cos Θ,sin Θ) = (cos 30º, sin 30º) = (√3 / 2 , 1 / 2)

Example Question #4 : Reference Angles

What is the reference angle for \(\displaystyle 45^{\circ}\)?

Possible Answers:

\(\displaystyle 180^{\circ}\)

\(\displaystyle 90^{\circ}\)

\(\displaystyle 135^{\circ}\)

\(\displaystyle 45^{\circ}\)

\(\displaystyle 315^{\circ}\)

Correct answer:

\(\displaystyle 45^{\circ}\)

Explanation:

A reference angle is the smallest possible angle between a given angle measurement and the x-axis.

In this case, our angle \(\displaystyle 45^{\circ}\) lies in Quadrant I, so the angle is its own reference angle.

Thus, the reference angle for \(\displaystyle 45^{\circ}\) is \(\displaystyle 45^{\circ}\).

Learning Tools by Varsity Tutors