All ACT Math Resources
Example Questions
Example Question #1 : Evaluating Expressions
If x = y – 3, then (y – x)3 =
9
–27
27
3
–9
27
Solve for equation for y – x = 3. Then, plug in 3 into (y – x)3 = 27.
Example Question #1 : Evaluating Expressions
When graphed in the (x,y) coordinate plane, at what point do the lines -2x + 4y = 5 and y = -2 intersect?
(-13/2,-2)
(2,-2)
(13/2,-2)
(13/2,2)
(-13/2,-2)
Plugging in y=-2 in the second equation, gives x=-13/2. This is the point where the graphs intersect.
Example Question #3 : Evaluating Expressions
The length in cm of a plastic container is 5cm less than triple its width. Which of the following equations is an accurate description of the length, l, as a function of the width, w?
l = 1/3w + 5
l = 3w + 5
l = 3w – 5
l = 5/3w + 3/5
l = 1/3w – 5
l = 3w – 5
This problem requires the development of an equation. We are told that the length is 5cm less than 3 times its width. So we should set up an equation that describes this situation. The equation l = 3w – 5 demonstrates how the length is 5 cm less than 3 times the width of the container.
Example Question #4 : Evaluating Expressions
The expression x(9 + x)(x – 2) = 4 is a polynomial of which degree?
2
1
3
0
4
3
The highest power this polynomial can achieve is 3.
Example Question #5 : Evaluating Expressions
Given that x = 2 and y = 3, how much less is the value of 3x2 – 2y than the value of 3y2 – 2x?
1
29
47
17
6
17
First, we solve each expression by plugging in the given values for x and y:
3(22) – 2(3) = 12 – 6 = 6
3(32) – 2(2) = 27 – 4 = 23
Then we find the difference between the first and second expressions’ values:
23 – 6 = 17
Example Question #6 : Evaluating Expressions
Evaluate 4x2 + 6x – 17, when x = 3.
30
36
13
17
37
37
Plug in 3 for x, giving you 36 + 18 – 17, which equals 37.
Example Question #4 : How To Evaluate Algebraic Expressions
John has a motorcycle. He drives it to the store, which is 30 miles away. It takes him 30 minutes to drive there and 60 minutes to drive back, due to traffic. What was his average speed roundtrip in miles per hour?
40 mph
30 mph
45 mph
50 mph
60 mph
40 mph
The whole trip is 60 miles, and it takes 90 minutes, which is 1.5 hours.
Miles per hour is 60/1.5 = 40 mph
Example Question #7 : Evaluating Expressions
If (xy/2) – 3w = –9, what is the value of w in terms of x and y?
w = 3 + (xy/6)
3xy – 6
3xy + 6
(1/2)xy – 3
(1/3)xy + 6
w = 3 + (xy/6)
–3w = –9 – (xy/2)
w = 3 + (xy/6)
Example Question #8 : Evaluating Expressions
Evaluate 5x2 + 16x + 7 when x = 7
361
364
363
362
365
364
Plug in 7 for x and you get 5(49) + 16(7) + 7 = 364
Example Question #9 : Evaluating Expressions
Let for all integers and . Which of the following is the value of ?
In order to solve the expression, replace with and with in the definition given: