ACT Math : Integers

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Multiply Odd Numbers

The product of two numbers is a negative odd integer. Which statement must be true about the numbers?

Possible Answers:

\displaystyle \textup{Both numbers must be integers.}

\displaystyle \textup{Both numbers must be even.}

\displaystyle \textup{Both numbers cannot be odd.}

\displaystyle \textup{Both numbers must be negative.}

\displaystyle \textup{Both numbers must be odd.}

Correct answer:

\displaystyle \textup{Both numbers must be odd.}

Explanation:

For the product of two numbers to be even, one number must be even. For the product of two numbers to be odd, both numbers must be odd.

Remember:

\displaystyle O \cdot E = E

\displaystyle O \cdot O = O

\displaystyle E \cdot E = E

Example Question #521 : Arithmetic

Evaluate:  \displaystyle 102-18

Possible Answers:

\displaystyle 94

\displaystyle 82

\displaystyle 80

\displaystyle 84

\displaystyle 90

Correct answer:

\displaystyle 84

Explanation:

First solve by evaluating the ones digit.  Carry over a 1 from the \displaystyle 10 so that the value of the ones digit can be evaluated.

\displaystyle 12-8=4

After the carry over, the \displaystyle 10 becomes a \displaystyle 9.  This value will be used for the tens digit of the next term.  The hundreds digit will become zero.

Evaluate the tens digit.

\displaystyle 9-1=8

Combine the tens digit and the ones digit.

The final answer is \displaystyle 84.

Example Question #1 : How To Subtract Even Numbers

Solve:

\displaystyle 128-68

Possible Answers:

\displaystyle 50

\displaystyle 60

\displaystyle 55

\displaystyle 70

Correct answer:

\displaystyle 60

Explanation:

1. First subtract the ones digits:

\displaystyle 8-8=0

So the ones digit will be a 0.

2. Next subtract the tens digit borrowing the 1 from the hundreds digit:

\displaystyle 12-6=6

So the tens digit will be a 6.

3. Add the tens and ones digits together:

\displaystyle 60+0=60

Example Question #2 : How To Subtract Even Numbers

Solve:

\displaystyle 274-88

Possible Answers:

\displaystyle 184

\displaystyle 186

\displaystyle 190

\displaystyle 188

Correct answer:

\displaystyle 186

Explanation:

1. First subtract the ones digits borrowing a 1 from the tens digit:

\displaystyle 14-8=6

So the ones digit will be a 6.

2. Next subtract the tens digit borrowing the 1 from the hundreds digit:

\displaystyle 16-8=8

So the tens digit will be a 8.

3. Next add the hundreds, tens and ones digits together:

\displaystyle 100+80+6=186

Example Question #1 : How To Add Even Numbers

Which of the following expressions is odd for any integers \displaystyle a and \displaystyle b?

Possible Answers:

\displaystyle 2a+3b

All the expressions can be even for some combination of \displaystyle a and \displaystyle b

\displaystyle 5a-3b

\displaystyle 4(a+5b+1)

\displaystyle 4b-2a+3

Correct answer:

\displaystyle 4b-2a+3

Explanation:

The key here is for any integers \displaystyle a and \displaystyle b, that means that no matter what you set \displaystyle a and \displaystyle b equal to you will get an odd number. An odd number is not divisible by 2, also it is an even number plus and odd number. The only expression that satisfies this is \displaystyle 4b-2a+3\displaystyle 4b will always be even, so will \displaystyle -2a, but \displaystyle 3 is always odd so the combination gives us an odd number, always.

Example Question #1 : How To Add Even Numbers

Evaluate:  \displaystyle 998+1002

Possible Answers:

\displaystyle 1996

\displaystyle 2000

\displaystyle 2016

\displaystyle 10982

\displaystyle 2810

Correct answer:

\displaystyle 2000

Explanation:

For this problem, align and solve by adding the ones digit \displaystyle (8+2), tens digit \displaystyle (9+0+ carried\:1), and hundreds digit \displaystyle (9+carried\:1). This also means that you have to add \displaystyle 1 to the \displaystyle 1 in the thousands place to get \displaystyle 2

\displaystyle 998+1002=2000

Example Question #2 : How To Add Even Numbers

Find the sum of 12 and 42.

Possible Answers:

\displaystyle 54

\displaystyle 31

\displaystyle 52

\displaystyle 30

\displaystyle 64

Correct answer:

\displaystyle 54

Explanation:

Rewrite the question into a mathematical expression.

\displaystyle 12+42

Add the ones digit. 

\displaystyle 2+2=4

Add the tens digit.

\displaystyle 1+4=5

Combine the tens digit and the ones digit. The answer is \displaystyle 54.

Example Question #1 : How To Divide Even Numbers

Solve:  \displaystyle 80\div6

Possible Answers:

\displaystyle 13

\displaystyle 14.5

\displaystyle \frac{40}{3}

\displaystyle 13.3

\displaystyle 12

Correct answer:

\displaystyle \frac{40}{3}

Explanation:

This problem can be solved using common factors.  

Rewrite \displaystyle 80\div6 using factors.  

\displaystyle \frac{80}{6}=\frac{2 \cdot 40}{2 \cdot 3} = \frac{40}{3}

Example Question #2 : How To Divide Even Numbers

Divide: \displaystyle 1028\div1004

Possible Answers:

\displaystyle \frac{267}{256}

\displaystyle 7

\displaystyle 1.023

\displaystyle \frac{6}{5}

\displaystyle \frac{257}{251}

Correct answer:

\displaystyle \frac{257}{251}

Explanation:

Rewrite  \displaystyle 1028\div1004 by using common factors. Reduce to the simplest form.

\displaystyle \frac{1028}{1004}=\frac{2\cdot 514}{2\cdot 502} = \frac{2\cdot 2\cdot257}{2\cdot 2\cdot251}=\frac{257}{251}

Example Question #3 : How To Divide Even Numbers

Divide:  \displaystyle 2032\div 234

Possible Answers:

\displaystyle 8.7

\displaystyle \frac{38}{17}

\displaystyle \frac{106}{17}

\displaystyle \frac{1016}{117}

\displaystyle 8.6

Correct answer:

\displaystyle \frac{1016}{117}

Explanation:

Rewrite \displaystyle 2032\div 234 and use common factors to simplify.

 

\displaystyle \frac{2032}{234}=\frac{2\cdot1016}{2\cdot 117}=\frac{1016}{117}

Learning Tools by Varsity Tutors