All SSAT Upper Level Math Resources
Example Questions
Example Question #451 : Ssat Upper Level Quantitative (Math)
Find the equation of the line that passes through the point and is parallel to the line with the equation .
Because the two lines are parallel, we know that the slope of the line we need to find must also be .
Next, plug in the point given by the question to find the y-intercept of the line.
Now, we know the equation of the line must be .
Example Question #181 : Coordinate Geometry
Find the equation of the line that passes through the point and is parallel to the line with the equation .
Because the two lines are parallel, we know that the slope of the line we need to find must also be .
Next, plug in the point given by the question to find the y-intercept of the line.
.
We can then write the equation of the line:
Example Question #5 : How To Find The Equation Of A Parallel Line
Which of these formulas could be a formula for a line perpendicular to the line ?
This is a two-step problem. First, the slope of the original line needs to be found. The slope will be represented by "" when the line is in -intercept form .
So the slope of the original line is . A line with perpendicular slope will have a slope that is the inverse reciprocal of the original. So in this case, the slope would be . The second step is finding which line will give you that slope. For the correct answer, we find the following:
So, the slope is , and this line is perpendicular to the original.
Example Question #21 : How To Find The Equation Of A Parallel Line
Find the equation of a line that goes through the point and is parallel to the line with the equation .
For lines to be parallel, they must have the same slope. The slope of the line we are looking for then must be .
The point that's given in the equation is also the y-intercept.
Using these two pieces of information, we know that the equation for the line must be
Certified Tutor