SSAT Middle Level Math : Squares / Square Roots

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : How To Find The Square Root

Evaluate:

\displaystyle \sqrt{121} + \sqrt{49}

Possible Answers:

\displaystyle 14

\displaystyle 16

\displaystyle 15

\displaystyle 17

\displaystyle 18

Correct answer:

\displaystyle 18

Explanation:

\displaystyle 11 ^{2 } = 11 \times 11 = 121, so \displaystyle \sqrt{121} = 11.

\displaystyle 7 ^{2 } = 7 \times 7 = 49,  so \displaystyle \sqrt{49} = 7.

\displaystyle \sqrt{121} + \sqrt{49} = 11 + 7 = 18

Example Question #12 : Squares / Square Roots

Let \displaystyle N = \sqrt{7^{2}-5^{2}-3^{2}}

Then which of the following statements is correct?

Possible Answers:

\displaystyle 3 < N < 4

\displaystyle 2< N < 3

\displaystyle N = 3

\displaystyle 1< N < 2

\displaystyle N = 2

Correct answer:

\displaystyle 3 < N < 4

Explanation:

\displaystyle N = \sqrt{7^{2}-5^{2}-3^{2}} = \sqrt{49-25-9} = \sqrt{24-9} = \sqrt{15}

 

\displaystyle 9 < 15 < 16, so

\displaystyle \sqrt{9} < \sqrt{15} < \sqrt{16}

\displaystyle 3 < N < 4

Example Question #11 : How To Find The Square Root

Let \displaystyle N = \sqrt{10 \times 20 + 7 \times 8}

Which of the following is a true statement?

Possible Answers:

\displaystyle N = 14

\displaystyle 15 < N< 16

\displaystyle N = 15

\displaystyle 14 < N< 15

\displaystyle N = 16

Correct answer:

\displaystyle N = 16

Explanation:

\displaystyle N = \sqrt{10 \times 20 + 7 \times 8}= \sqrt{200 + 56}= \sqrt{256}

Since \displaystyle 16^2 = 256\displaystyle N = \sqrt{256} = 16

Example Question #14 : Squares / Square Roots

Which of the answer choices is equivalent to \displaystyle 2\sqrt{3}?

Possible Answers:

\displaystyle \sqrt{36}

\displaystyle \sqrt{6}

\displaystyle \sqrt{12}

\displaystyle \sqrt{9}

\displaystyle \sqrt{18}

Correct answer:

\displaystyle \sqrt{12}

Explanation:

\displaystyle 2 can also be written as \displaystyle \sqrt{4}, so \displaystyle 2\sqrt{3} can also be written as \displaystyle \sqrt{4\cdot 3}, or \displaystyle \sqrt{12}.

Example Question #11 : Squares / Square Roots

What is the square root of \displaystyle 49?

Possible Answers:

\displaystyle 14

\displaystyle 2401

\displaystyle 98

\displaystyle 6

\displaystyle 7

Correct answer:

\displaystyle 7

Explanation:

The square root of \displaystyle 49 is \displaystyle 7, since \displaystyle 7\cdot7=49.

Example Question #13 : How To Find The Square Root

Which of the answer choices is equivalent to \displaystyle \sqrt{24}?

Possible Answers:

\displaystyle 8

\displaystyle 12

\displaystyle 4

\displaystyle 2\sqrt{4}

\displaystyle 2\sqrt{6}

Correct answer:

\displaystyle 2\sqrt{6}

Explanation:

Recognize that \displaystyle \sqrt{24}=\sqrt{4\cdot 6}. Since \displaystyle \sqrt{4}=2, we can move the \displaystyle 2 outside of the radical sign. This leaves us with \displaystyle 2\sqrt{6}.

Example Question #12 : Squares / Square Roots

\displaystyle x^{2} = 49, \left | x\right | + 7 = ?

Possible Answers:

56

10

13

14

0

Correct answer:

14

Explanation:

If \displaystyle x^{2} = 49, then \displaystyle x=\pm 7.

\displaystyle \left | 7 \right |=7,\ \left | -7 \right |=7

Therefore, \displaystyle \left | x \right |+7=7+7=14.

Example Question #12 : How To Find The Square Root

Evaluate: 

\displaystyle \sqrt{\frac{169}{100}}

Possible Answers:

\displaystyle \frac{10}{13}

\displaystyle -\frac{10}{13}

\displaystyle \frac{13}{10}

\displaystyle \sqrt{\frac{169}{100}} is undefined.

\displaystyle -\frac{13}{10}

Correct answer:

\displaystyle \frac{13}{10}

Explanation:

To find the square root of a fraction, extract the square root of both the numerator and the denominator. Since \displaystyle 10 ^{2} = 10 \times 10 = 100\displaystyle \sqrt{100} = 10, and since \displaystyle 13^{2} = 169\displaystyle \sqrt{169} = 13.

Combine these results:

\displaystyle \sqrt{\frac{169}{100}} = \frac{\sqrt{169}}{\sqrt{100}} = \frac{13}{10}

Example Question #16 : How To Find The Square Root

Evaluate: 

\displaystyle \sqrt{0.0009}

Possible Answers:

\displaystyle \sqrt{0.0009} is an undefined quantity.

\displaystyle 0.03

\displaystyle 0.00003

\displaystyle 0.003

\displaystyle 0.0003

Correct answer:

\displaystyle 0.03

Explanation:

\displaystyle 0.0009= \frac{9}{10,000}, so 

\displaystyle \sqrt{0.0009} = \sqrt{\frac{9}{10,000}}.

The square root of a fraction can be determined by taking the square roots of both numerator and denominator. Since \displaystyle 3^{2} = 9\displaystyle \sqrt{9 } = 3, and since \displaystyle 100^{2} = 10,000\displaystyle \sqrt{10,000} = 100. Therefore, 

\displaystyle \sqrt{0.0009} = \sqrt{\frac{9}{10,000}} = \frac{\sqrt{9}}{\sqrt{10,000}} = \frac{3}{100} = 0.03.

Example Question #17 : How To Find The Square Root

Note: The square root of a number is the number times itself. For example the square root of 4 is 2 because 2 x 2 = 4 or 2 squared is 4.

Find the square root of 

\displaystyle \sqrt{144}.

Possible Answers:

\displaystyle 14

\displaystyle 12

\displaystyle 10

\displaystyle 12^{2}

\displaystyle 4^{2} \times 3^{2}

Correct answer:

\displaystyle 12

Explanation:

So we are looking for a number that when it is squared is equal to 144. At this point you have to take some guesses. 

\displaystyle 10^{2}=100

\displaystyle 11^{2}=121

Your getting closer

\displaystyle 13^{2}=169

So it must be between 11 and 13, lets try 12.

\displaystyle 12^{2}=144

So 12 is the answer.

Learning Tools by Varsity Tutors