SSAT Middle Level Math : How to subtract variables

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #71 : Operations

Simplify:

\displaystyle 3x + 2xy - 3y + 4x - 15y

Possible Answers:

\displaystyle 7x + 2xy - 18y

\displaystyle 3x - xy + 4x - 15y

\displaystyle 3x + 3xy - 15y

\displaystyle -9xy

\displaystyle 7x + 2xy - 12y

Correct answer:

\displaystyle 7x + 2xy - 18y

Explanation:

This problem is just a matter of grouping together like terms.  Remember that terms like \displaystyle xy are treated as though they were their own, different variable:

\displaystyle 3x + 4x - 3y - 15y + 2xy

The only part that might be a little hard is:

\displaystyle -3y - 15y

If you are confused, think of your number line.  This is like "going back" (more negative) from 15.  Therefore, you ranswer will be:

\displaystyle 7x + 2xy - 18y

Example Question #143 : Algebra

Simplify:

\displaystyle 3x - 5y + 3xy + 9yz

Possible Answers:

\displaystyle 10xyz

\displaystyle -2x + 3xy + 9yz

\displaystyle 3x - 5y + 3xy + 9yz

\displaystyle xy + 4yz

\displaystyle xy + 9yz

Correct answer:

\displaystyle 3x - 5y + 3xy + 9yz

Explanation:

This problem really is a trick question.  There are no common terms among any of the parts of the expression to be simplified.  In each case, you have an independent variable or set of variables: \displaystyle x, y, xy, and \displaystyle yz.  Therefore, do not combine any of the elements!

Example Question #12 : How To Subtract Variables

Simplify:

\displaystyle 5x + 3y - (4x + 2y)

Possible Answers:

\displaystyle 9x + y

\displaystyle x + y

\displaystyle x + 5y

\displaystyle 9x + 5y - (4x + 2y)

\displaystyle 2xy

Correct answer:

\displaystyle x + y

Explanation:

Remember, when there is a subtraction outside of a group, you should add the opposite of each member.  That is:

\displaystyle 5x + 3y - (4x + 2y) = 5x + 3y + (-4x) + (-2y)

That is a bit confusing, so let's simplify.  When you add a negative, you subtract:

\displaystyle 5x + 3y - 4x - 2y

Now, group your like variables:

\displaystyle 5x- 4x + 3y - 2y

Finally, perform the subtractions and get: \displaystyle x + y

Example Question #11 : How To Subtract Variables

Simplify:

\displaystyle 4xy + 3y - (2xy + 3x) - y

Possible Answers:

\displaystyle 2xy + 2y + 3x

\displaystyle 2xy + 2y - 3x

\displaystyle 2xy + 4y + 3x

\displaystyle 7xy

\displaystyle 4y - xy - 3x

Correct answer:

\displaystyle 2xy + 2y - 3x

Explanation:

Begin by rewriting the subtracted group as a set of added negative numbers:

\displaystyle 4xy + 3y - (2xy + 3x) - y = 4xy + 3y + (-2xy) + (-3x) - y

Now, simplify that a little by rewriting the additions of negatives as being mere subtractions:

\displaystyle 4xy + 3y - 2xy - 3x - y

Next, move the like terms next to each other:

\displaystyle 4xy - 2xy + 3y- y - 3x

Finally, combine like terms:

\displaystyle 2xy + 2y - 3x

Example Question #1 : Expressions & Equations

Simplify:

\displaystyle 15a + 23b - (13b - 2a)

Possible Answers:

\displaystyle 13a + 10b

\displaystyle 2a + 21b

\displaystyle 17a + 10b

\displaystyle 27ab

\displaystyle 13a + 36b

Correct answer:

\displaystyle 17a + 10b

Explanation:

You need to begin by distributing the minus sign through the whole group \displaystyle (13b - 2a).  This gives you:

\displaystyle 15a + 23b - (13b - 2a) = 15a + 23b - 13b - (-2a)

Simplifying the double negative, you get:

\displaystyle 15a + 23b - 13b + 2a

Now, you can move the like terms next to each other:

\displaystyle 15a + 2a + 23b - 13b

Finally, simplify:

\displaystyle 17a + 10b

Example Question #1 : How To Subtract Variables

Simplify:

\displaystyle 4x + 3y - 3z - 3x + 2

Possible Answers:

\displaystyle 3xyz

\displaystyle 4xy - 3z + 2

\displaystyle 4x + 3y - 6z + 2

\displaystyle xyz + 2

\displaystyle x + 3y - 3z + 2

Correct answer:

\displaystyle x + 3y - 3z + 2

Explanation:

This problem is as simple as it appears.  All that you need to do is group together like terms:

\displaystyle 4x - 3x + 3y - 3z + 2

The only like terms are the \displaystyle x terms.  Therefore, the simple answer is a matter of subtracting 3 from 4:

\displaystyle x + 3y - 3z + 2

Example Question #2 : How To Subtract Variables

Simplify:

\displaystyle 21x + 51xy - 3x - (2x - 15xy)

Possible Answers:

\displaystyle 20x + 66xy

\displaystyle 16x + 36xy

\displaystyle 20x + 36xy

\displaystyle 16x + 66xy

\displaystyle 82xy

Correct answer:

\displaystyle 16x + 66xy

Explanation:

First, start by distributing the subtraction through the terms in parentheses.  Note that you will be subtracting negative numbers:

\displaystyle 21x + 51xy - 3x - 2x - (-15xy)

Subtracting a negative is the same as adding a positive:

\displaystyle 21x + 51xy - 3x - 2x +15xy

Now, group the like terms:

\displaystyle 21x - 3x - 2x+ 51xy +15xy

All you need to do now is combine like terms:

\displaystyle 16x + 66xy

Example Question #7 : How To Subtract Variables

Simplify:

\displaystyle 33x + 25y - 22xy + 2z - (22y + 21x + 4z)

Possible Answers:

\displaystyle 12x + 3y - 22xy + 6z

\displaystyle 12x + 3y - 22xy + 2z

\displaystyle -11xyz

\displaystyle 12x + 3y - 22xy - 2z

\displaystyle 12x + 46y - 22xy +6z

Correct answer:

\displaystyle 12x + 3y - 22xy - 2z

Explanation:

Begin by distributing the subtraction through the parentheses:

\displaystyle 33x + 25y - 22xy + 2z - 22y - 21x - 4z

Next, group the like terms:

\displaystyle 33x - 21x + 25y - 22y - 22xy + 2z - 4z

Now, combine them:

\displaystyle 12x + 3y - 22xy -2z

Example Question #11 : How To Subtract Variables

Simplify:

\displaystyle 31x + 21y + 3x^{2} - 2y - 2x^{2} + 2x^{2}y

Possible Answers:

\displaystyle 53x^{2}y

\displaystyle 32x^{3} + 19y + 2x^{2}y

\displaystyle 31x + 5x^{2} + 19y + 2x^{2}y

\displaystyle 32x^{2} + 19y + 2x^{2}y

\displaystyle 31x + x^{2} + 19y + 2x^{2}y

Correct answer:

\displaystyle 31x + x^{2} + 19y + 2x^{2}y

Explanation:

Begin by putting similar variables together.  Remember that combinations of variables such as \displaystyle x^2y are treated like a separate variable:

\displaystyle 31x + 21y - 2y + 3x^{2} - 2x^{2} + 2x^{2}y

Combine like terms:

\displaystyle 31x + 19y + x^{2} + 2x^{2}y

You can then rearrange the variables to get the answer as written:

\displaystyle 31x + x^{2} + 19y + 2x^{2}y

Example Question #91 : Algebra

Simplify:

\displaystyle 53x - (21x - 33y) + 32y

Possible Answers:

\displaystyle 33x - y

\displaystyle 32xy

\displaystyle 33x +y

\displaystyle 88xy

Correct answer:

Explanation:

Begin by distributing the subtraction through the group:

\displaystyle 53x - 21x - (-33y) + 32y

Next, change the double negative to a positive:

 \displaystyle 32x + 65y

Learning Tools by Varsity Tutors