SSAT Middle Level Math : How to find the solution to an equation

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Ssat Middle Level Quantitative (Math)

Solve for \displaystyle x:

\displaystyle -5x = -70

Possible Answers:

\displaystyle x = -75

\displaystyle x = 14

\displaystyle x = -65

\displaystyle x = 350

\displaystyle x = -14

Correct answer:

\displaystyle x = 14

Explanation:

Divide both sides by \displaystyle -5:

\displaystyle -5x = -70

\displaystyle -5x \div (-5) = -70 \div (-5)

\displaystyle x = -70 \div (-5) = + (70\div 5) = 14

 

Example Question #22 : Ssat Middle Level Quantitative (Math)

Solve for \displaystyle x:

\displaystyle x - 28 = 82

Possible Answers:

\displaystyle x = 110

\displaystyle x = 100

\displaystyle x = 44

\displaystyle x = 64

\displaystyle x = 54

Correct answer:

\displaystyle x = 110

Explanation:

Add 28 to both sides:

\displaystyle x - 28 = 82

\displaystyle x - 28 + 28 = 82 + 28

\displaystyle x = 110

Example Question #21 : How To Find The Solution To An Equation

Solve for \displaystyle x

\displaystyle 3x - 9= 30

Possible Answers:

\displaystyle x= 11

\displaystyle x = 9

\displaystyle x = 17

\displaystyle x = 7

\displaystyle x = 13

Correct answer:

\displaystyle x = 13

Explanation:

\displaystyle 3x - 9= 30

\displaystyle 3x - 9 + 9= 30+ 9

\displaystyle 3x = 39

\displaystyle 3x \div 3 = 39 \div 3

\displaystyle x = 13

Example Question #22 : How To Find The Solution To An Equation

Solve for \displaystyle x

\displaystyle 3x + 9= 30

Possible Answers:

\displaystyle x = 12

\displaystyle x = 11

\displaystyle x = 5

\displaystyle x = 7

\displaystyle x = 8

Correct answer:

\displaystyle x = 7

Explanation:

\displaystyle 3x + 9= 30

\displaystyle 3x + 9 - 9= 30- 9

\displaystyle 3x = 21

\displaystyle 3x \div 3 = 21 \div 3

\displaystyle x = 7

Example Question #2 : How To Find The Measure Of An Angle

Call the three angles of a triangle \displaystyle \angle 1, \angle 2, \angle 3

The measure of \displaystyle \angle2 is twenty degrees greater than that of \displaystyle \angle 1; the measure of \displaystyle \angle 3 is thirty degrees less than twice that of \displaystyle \angle 1. If \displaystyle x is the measure of \displaystyle \angle 1, then which of the following equations would we need to solve in order to calculate the measures of the angles?

Possible Answers:

\displaystyle x + (x-20) + 2(x-30) = 180

\displaystyle x + (x+20) = (2x+30)

\displaystyle x + (x+20) + (2x-30) = 360

\displaystyle x + (x+20) + (2x-30) = 180

\displaystyle x + (x-20) + 2(x-30) = 360

Correct answer:

\displaystyle x + (x+20) + (2x-30) = 180

Explanation:

The measure of \displaystyle \angle2 is twenty degrees greater than the measure \displaystyle x of \displaystyle \angle 1, so its measure is 20 added to that of \displaystyle \angle 1 - that is, \displaystyle x + 2 0.

The measure of \displaystyle \angle 3 is thirty degrees less than twice that of \displaystyle \angle 1. Twice the measure of \displaystyle \angle 1 is \displaystyle 2x, and thirty degrees less than this is 30 subtracted from \displaystyle 2x - that is, \displaystyle 2x-30.

The sum of the measures of the three angles of a triangle is 180, so, to solve for \displaystyle x - thereby allowing us to calulate all three angle measures - we add these three expressions and set the sum equal to 180. This yields the equation:

\displaystyle x + (x+20) + (2x-30) = 180

Example Question #3 : How To Find The Measure Of An Angle

Call the three angles of a triangle \displaystyle \angle 1, \angle 2, \angle 3

The measure of \displaystyle \angle2 is forty degrees less than that of \displaystyle \angle 1; the measure of \displaystyle \angle 3 is ten degrees less than twice that of \displaystyle \angle 1. If \displaystyle x is the measure of \displaystyle \angle 1, then which of the following equations would we need to solve in order to calculate the measures of the angles?

Possible Answers:

\displaystyle x + (x-40) + 2 (x - 10) = 360

\displaystyle x + (x-40) + 2 (x - 10) = 180

\displaystyle x + (x-40) = (2x - 10)

\displaystyle x + (x-40) + (2x - 10) = 180

\displaystyle x + (x-40) + (2x - 10) = 360

Correct answer:

\displaystyle x + (x-40) + (2x - 10) = 180

Explanation:

The measure of \displaystyle \angle2 is forty degrees less than the measure \displaystyle x of \displaystyle \angle 1, so its measure is 40 subtracted from that of \displaystyle \angle 1 - that is, \displaystyle x -40.

The measure of \displaystyle \angle 3 is ten degrees less than twice that of \displaystyle \angle 1. Twice the measure of \displaystyle \angle 1 is \displaystyle 2x, and ten degrees less than this is 10 subtracted from \displaystyle 2x - that is, \displaystyle 2x-10.

The sum of the measures of the three angles of a triangle is 180, so, to solve for \displaystyle x - thereby allowing us to calulate all three angle measures - we add these three expressions and set the sum equal to 180. This yields the equation:

\displaystyle x + (x-40) + (2x - 10) = 180

Example Question #25 : Ssat Middle Level Quantitative (Math)

Solve for \displaystyle x:

\displaystyle -5 (x-12) = -35

Possible Answers:

\displaystyle x=42

\displaystyle x=-7

\displaystyle x=-5

\displaystyle x=-18

\displaystyle x=19

Correct answer:

\displaystyle x=19

Explanation:

\displaystyle -5 (x-12) = -35

\displaystyle -5 \cdot x- \left (-5 \right ) \cdot 12 = -35

\displaystyle -5x- \left (-60 \right ) = -35

\displaystyle -5x+60= -35

\displaystyle -5x+60 -60= -35-60

\displaystyle -5x= -95

\displaystyle -5x \div (-5)= -95\div (-5)

\displaystyle x=19

Example Question #26 : Ssat Middle Level Quantitative (Math)

Solve for \displaystyle x:

\displaystyle 5x + 15 = x + 84

Possible Answers:

\displaystyle x=11\frac{1}{2}

\displaystyle x = 17\frac{1}{4}

\displaystyle x= 13\frac{4}{5} 

\displaystyle x=16\frac{1}{2}

\displaystyle x=24\frac{3}{4}

Correct answer:

\displaystyle x = 17\frac{1}{4}

Explanation:

\displaystyle 5x + 15 = x + 84

\displaystyle 5x -x+ 15 = x-x + 84

\displaystyle 4x+ 15 = 84

\displaystyle 4x+ 15-15 = 84-15

\displaystyle 4x = 69

\displaystyle 4x \div 4= 69\div 4

\displaystyle x = 17\frac{1}{4}

Example Question #27 : Ssat Middle Level Quantitative (Math)

Solve for \displaystyle x

\displaystyle 3x -21=66

Possible Answers:

\displaystyle x=29

\displaystyle x=15

\displaystyle x=207

\displaystyle x=45

\displaystyle x=69

Correct answer:

\displaystyle x=29

Explanation:

\displaystyle 3x -21=66

\displaystyle 3x -21+ 21=66+ 21

\displaystyle 3x =87

\displaystyle 3x\div 3=87\div 3

\displaystyle x=29

Example Question #28 : Ssat Middle Level Quantitative (Math)

Solve for \displaystyle x:

\displaystyle 4x - 15 = x + 84

Possible Answers:

\displaystyle x = 17 \frac{1}{4}

\displaystyle x= 23

\displaystyle x = 13 \frac{4}{5}

\displaystyle x=33

\displaystyle x= 24\frac{3}{4}

Correct answer:

\displaystyle x=33

Explanation:

\displaystyle 4x - 15 = x + 84

\displaystyle 4x-x - 15 = x -x+ 84

\displaystyle 3x - 15 = 84

\displaystyle 3x - 15 +15= 84+15

\displaystyle 3x = 99

\displaystyle 3x \div 3 = 99\div 3

\displaystyle x=33

Learning Tools by Varsity Tutors