SSAT Elementary Level Math : SSAT Elementary Level Quantitative (Math)

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4 : Solving For Length

What is the length of a rectangular room with a perimeter of \displaystyle 59ft and a width of \displaystyle 17ft?

Possible Answers:

\displaystyle 15ft

\displaystyle 12ft

\displaystyle 12.5ft

\displaystyle 25ft

\displaystyle 15.5ft

Correct answer:

\displaystyle 12.5ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 59=2l+2(17)

\displaystyle 59=2l+34

Subtract \displaystyle 34 from both sides

\displaystyle 59-34=2l+134-34

\displaystyle 25=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{25}{2}=\frac{2l}{2}

\displaystyle 12.5=l

Example Question #461 : Plane Geometry

What is the length of a rectangular room with a perimeter of \displaystyle 66ft and a width of \displaystyle 18ft?

 

Possible Answers:

\displaystyle 15ft

\displaystyle 13ft

\displaystyle 14ft

\displaystyle 12ft

\displaystyle 11ft

Correct answer:

\displaystyle 15ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 66=2l+2(18)

\displaystyle 66=2l+36

Subtract \displaystyle 36 from both sides

\displaystyle 66-36=2l+36-36

\displaystyle 30=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{30}{2}=\frac{2l}{2}

\displaystyle 15=l

Example Question #6 : Solving For Length

What is the length of a rectangular room with a perimeter of \displaystyle 60ft and a width of \displaystyle 14ft?

Possible Answers:

\displaystyle 16ft

\displaystyle 32ft

\displaystyle 30ft

\displaystyle 26ft

\displaystyle 18ft

Correct answer:

\displaystyle 16ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 60=2l+2(14)

\displaystyle 60=2l+28

Subtract \displaystyle 28 from both sides

\displaystyle 60-28=2l+28-28

\displaystyle 32=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{32}{2}=\frac{2l}{2}

\displaystyle 16=l

Example Question #464 : Plane Geometry

What is the length of a rectangular room with a perimeter of \displaystyle 40ft and a width of \displaystyle 6ft?

Possible Answers:

\displaystyle 16ft

\displaystyle 18ft

\displaystyle 32ft

\displaystyle 14ft

\displaystyle 28ft

Correct answer:

\displaystyle 14ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 40=2l+2(6)

\displaystyle 40=2l+12

Subtract \displaystyle 12 from both sides

\displaystyle 40-12=2l+12-12

\displaystyle 28=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{28}{2}=\frac{2l}{2}

\displaystyle 14=l

Example Question #465 : Plane Geometry

What is the length of a rectangular room with a perimeter of \displaystyle 96ft and a width of \displaystyle 30ft?

Possible Answers:

\displaystyle 19ft

\displaystyle 18ft

\displaystyle 24ft

\displaystyle 20ft

\displaystyle 22ft

Correct answer:

\displaystyle 18ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 96=2l+2(30)

\displaystyle 96=2l+60

Subtract \displaystyle 60 from both sides

\displaystyle 96-60=2l+60-60

\displaystyle 36=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{36}{2}=\frac{2l}{2}

\displaystyle 18=l

Example Question #7 : Solving For Length

What is the length of a rectangular room with a perimeter of \displaystyle 90ft and a width of \displaystyle 12ft

Possible Answers:

\displaystyle 66ft

\displaystyle 33ft

\displaystyle 22ft

\displaystyle 55ft

\displaystyle 44ft

Correct answer:

\displaystyle 33ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 90=2l+2(12)

\displaystyle 90=2l+24

Subtract \displaystyle 24 from both sides

\displaystyle 90-24=2l+24-24

\displaystyle 66=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{66}{2}=\frac{2l}{2}

\displaystyle 33=l

Example Question #466 : Plane Geometry

What is the length of a rectangular room with a perimeter of \displaystyle 100ft and a width of \displaystyle 18ft

 

Possible Answers:

\displaystyle 60ft

\displaystyle 32ft

\displaystyle 34ft

\displaystyle 58ft

\displaystyle 68ft

Correct answer:

\displaystyle 32ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 100=2l+2(18)

\displaystyle 100=2l+36

Subtract \displaystyle 36 from both sides

\displaystyle 100-36=2l+36-36

\displaystyle 64=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{64}{2}=\frac{2l}{2}

\displaystyle 32=l

Example Question #21 : How To Find Perimeter

What is the length of a rectangular room with a perimeter of \displaystyle 50ft and a width of \displaystyle 7ft?

Possible Answers:

\displaystyle 36ft

\displaystyle 20ft

\displaystyle 14ft

\displaystyle 28ft

\displaystyle 18ft

Correct answer:

\displaystyle 18ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 50=2l+2(7)

\displaystyle 50=2l+14

Subtract \displaystyle 14 from both sides

\displaystyle 50-14=2l+14-14

\displaystyle 36=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{36}{2}=\frac{2l}{2}

\displaystyle 18=l

Example Question #1 : Recognize And Draw Shapes: Ccss.Math.Content.2.G.A.1

Which shape has \displaystyle 4 angles? 

Possible Answers:

Cube

Triangle 

Rectangle 

Hexagon 

Pentagon 

Correct answer:

Rectangle 

Explanation:

A rectangle has \displaystyle 4 angles. 

Screen shot 2015 09 09 at 12.27.38 pm

Example Question #471 : Quadrilaterals

Find the perimeter of a rectangle whose width is 6 and length is 8.

Possible Answers:

\displaystyle 7

\displaystyle 28

\displaystyle 14

\displaystyle 48

Correct answer:

\displaystyle 28

Explanation:

To solve, simply use the following formula for perimeter. Thus,

\displaystyle P=2(w+l)=2(6+8)=2*14=28

Learning Tools by Varsity Tutors