SAT Mathematics : Graphical Representation of Functions

Study concepts, example questions & explanations for SAT Mathematics

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #6 : Graphing Linear Equations

What is the area of the triangle formed by the lines , and ?

Possible Answers:

45

6

48

15

Correct answer:

45

Explanation:

In order to find the area of the triangle, we can use relevant points such as the point of intersection and the x intercepts. In this case, the point of intersection is the point at which the equations of the lines are equal. So, if 

then x = 4, and if we plug 4 back into our equation we can see that y = 6. So, the point of intersection is (4, 6). 

If we set y = 0 for each equation, we can also find the x intercepts, in this case, (1, 0) and (16, 0).

The triangle will appear as follows

Screenshot 2020 10 06 090922

At this point, we can use the x intercepts to find the base, 16-1 or 15, and the point of intersection to find the height, in this case 6.

If the area of a triangle is 

we can fill in the unknowns with

to arrive at an area of 45.

Example Question #381 : Sat Math

The equation 3x+2y=6 represents a line. This line does NOT pass through which of the four quadrants?

Possible Answers:

III

II

I

IV

Correct answer:

III

Explanation:

We can quickly visualize this line to draw conclusions.

 

In order to do so, plug in 0 for x to find a point on the line:

3(0)+2y=6

y=3

Thus, (0,3) is a point on the line.

Plug in 0  for y to find a second point on the line:

3x+2(0)=6

x=2

(2,0) is another point on the line.

Now we know that the line passes through the points (2,0) and (0,3).  

A quick sketch of the two points reveals that the line passes through all but the third quadrant.

 

*note - a line with a positive slope will always pass through quadrants I and III, while a line with a negative slope will always pass through quadrants II and IV.*

Learning Tools by Varsity Tutors