SAT Math : Arithmetic

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #631 : Arithmetic

What is the Lowest Common Denominator of \displaystyle \frac{1}{6} ,\displaystyle \frac{1}{3}and \displaystyle \frac{1}{7}?

Possible Answers:

\displaystyle 9

\displaystyle 49

\displaystyle 14

\displaystyle 126

\displaystyle 42

Correct answer:

\displaystyle 42

Explanation:

\displaystyle 3:3,6,9,12,15,18,21,24,27,30,33,36,39,42

\displaystyle 6:6,12,18,24,30,36,42

\displaystyle 7:7,14,21,28,35,42

The smallest number they all have in common in \displaystyle 42.

Example Question #1 : How To Simplify A Fraction

Simplify x/2 – x/5

Possible Answers:

7x/10

3x/7

5x/3

2x/7

3x/10

Correct answer:

3x/10

Explanation:

Simplifying this expression is similar to 1/2 – 1/5.  The denominators are relatively prime (have no common factors) so the least common denominator (LCD) is 2 * 5 = 10.  So the problem becomes 1/2 – 1/5 = 5/10 – 2/10 = 3/10.

Example Question #2 : How To Simplify A Fraction

If \dpi{100} \small \frac{p}{6} is an integer, which of the following is a possible value of \dpi{100} \small p?

Possible Answers:

\dpi{100} \small 0

\dpi{100} \small 4

\dpi{100} \small 16

\dpi{100} \small 2

\dpi{100} \small 3

Correct answer:

\dpi{100} \small 0

Explanation:

\dpi{100} \small \frac{0}{6}=0, which is an integer (a number with no fraction or decimal part).  All the other choices reduce to non-integers.

Example Question #1 : How To Simplify A Fraction

Simplify: \frac{4x^{5}y^{3}z}{12x^{3}y^{6}z^{2}}\displaystyle \frac{4x^{5}y^{3}z}{12x^{3}y^{6}z^{2}}

Possible Answers:

\frac{1}{3x^{2}y^{3}z}\displaystyle \frac{1}{3x^{2}y^{3}z}

\frac{x^{2}}{3y^{3}z}\displaystyle \frac{x^{2}}{3y^{3}z}

\frac{3x^{2}y^{3}}{z}\displaystyle \frac{3x^{2}y^{3}}{z}

 

 

\frac{x^{2}}{8y^{3}z}\displaystyle \frac{x^{2}}{8y^{3}z}

Correct answer:

\frac{x^{2}}{3y^{3}z}\displaystyle \frac{x^{2}}{3y^{3}z}

Explanation:

\frac{4x^{5}y^{3}z}{12x^{3}y^{6}z^{2}}=\frac{x^{2}}{3y^{3}z}\displaystyle \frac{4x^{5}y^{3}z}{12x^{3}y^{6}z^{2}}=\frac{x^{2}}{3y^{3}z}

First, let's simplify \frac{4}{12}\displaystyle \frac{4}{12}. The greatest common factor of 4 and 12 is 4. 4 divided by 4 is 1 and 12 divided by 4 is 3. Therefore \frac{4}{12}=\frac{1}{3}\displaystyle \frac{4}{12}=\frac{1}{3}.

To simply fractions with exponents, subtract the exponent in the numerator from the exponent in the denominator. That leaves us with \frac{1}{3}x^{2}y^{-3}z^{-1}\displaystyle \frac{1}{3}x^{2}y^{-3}z^{-1} or \frac{x^{2}}{3y^{3}z}\displaystyle \frac{x^{2}}{3y^{3}z}

 

Example Question #4 : How To Simplify A Fraction

Which of the following is not equal to 32/24?

Possible Answers:

96/72

224/168

4/3

16/12

160/96

Correct answer:

160/96

Explanation:

24/32 = 1.33

16/12 =1.33

224/168 =1.33

4/3 = 1.33

96/72 = 1.33

160/96 = 1.67

Example Question #1 : Simplifying Fractions

Find the root of

\displaystyle y=\frac{x^2-\sqrt3x+\sqrt5x-\sqrt{15}}{x-\sqrt3}

Possible Answers:

\displaystyle \sqrt3

\displaystyle -\sqrt3

\displaystyle -\sqrt{5 }

\displaystyle \sqrt5

Can not be determined

Correct answer:

\displaystyle -\sqrt{5 }

Explanation:

\displaystyle y=\frac{x^2-\sqrt3x+\sqrt5x-\sqrt{15}}{x-\sqrt3}=\frac{(x-\sqrt3)(x+\sqrt5)}{x-\sqrt3}=x+\sqrt5

The root occurs where \displaystyle y=0. So we substitute 0 for \displaystyle y.

\displaystyle y=x+\sqrt{5}

\displaystyle 0=x+\sqrt{5}

This means that the root is at \displaystyle x=-\sqrt5.

Example Question #2 : How To Simplify A Fraction

Simplify the fraction below:

\displaystyle \frac{5}{125}

Possible Answers:

\displaystyle \frac{1}{20}

\displaystyle 25

\displaystyle \frac{2}{13}

\displaystyle \frac{1}{4}

\displaystyle \frac{1}{25}

Correct answer:

\displaystyle \frac{1}{25}

Explanation:

The correct approach to solve this problem is to first write factors for the numerator and the denominator:

\displaystyle 5: 1, 5

\displaystyle 125: 1, 5, 25, 125

The highest common factor is 5. Therefore, you can divide the numerator and denominator by 5 in order to get a simplified fraction. 

Thus the numerator becomes,

\displaystyle \frac{5}{5}=1 and the denominator becomes \displaystyle \frac{125}{5}=25.

Therefore the final answer is \displaystyle \frac{1}{25}.

Example Question #2 : How To Simplify A Fraction

Simplify:  \displaystyle \frac{32}{88}

Possible Answers:

\displaystyle \frac{8}{11}

\displaystyle \frac{4}{11}

\displaystyle \frac{3}{8}

\displaystyle \frac{1}{4}

\displaystyle \frac{2}{11}

Correct answer:

\displaystyle \frac{4}{11}

Explanation:

Find the common factors of the numerator and denominator.  They both share factors of 2,4, and 8.  For simplicity, factor out an 8 from both terms and simplify.

\displaystyle \frac{32}{88}= \frac{8\times 4}{8\times 11}= \frac{4}{11}

Example Question #3 : Simplifying Fractions

Simply the following fraction: 

\displaystyle \frac{\frac{a^2}{b}}{\frac{a}{b}}

Possible Answers:

\displaystyle a

\displaystyle \frac{a^2}{b}

\displaystyle \infty

\displaystyle b

\displaystyle \frac{a^3}{b^2}

Correct answer:

\displaystyle a

Explanation:

Remember that when you divide a fraction by a fraction, that is the same as multiplying the fraction in the numerator by the reciprocal of the fraction in the denominator. 

In other words,

\displaystyle \frac{\frac{a^2}{b}}{\frac{a}{b}} = \frac{a^2}{b}\cdot\frac{b}{a}=\frac{a^2b}{ab}

Simplifying this final fraction gives us our correct answer, \displaystyle a.

 

Example Question #206 : New Sat

Solve for \displaystyle x.

\displaystyle \frac{\frac{x-2}{4^2}}{\frac{x^2-4}{2}}=1

Possible Answers:

\displaystyle x=\frac{15}{8}

\displaystyle x=-2

\displaystyle x=-\frac{15}{8}

\displaystyle x=-\frac{8}{15}

\displaystyle x=\frac{8}{15}

Correct answer:

\displaystyle x=-\frac{15}{8}

Explanation:

To solve for \displaystyle x, simplify the fraction. In order to do this, recall that dividing by a fraction is the same as multiplying by its reciprocal. Therefore, rewrite the equation as follows.

\displaystyle \frac{\frac{x-2}{4^2}}{\frac{x^2-4}{2}}=1\Rightarrow \frac{x-2}{4^2}\times \frac{2}{x^2-4}=1

Now, simplify the first fraction by calculating four squared.

\displaystyle \frac{x-2}{16}\times \frac{2}{x^2-4}=1

From here, factor the denominator of the second fraction.

\displaystyle \frac{x-2}{16}\times \frac{2}{(x-2)(x+2)}=1

Next, factor the 16.

\displaystyle \frac{x-2}{2(8)}\times \frac{2}{(x-2)(x+2)}=1

From here, cancel out like terms that are in both the numerator and denominator. In this particular case that includes (x-2) and 2.

\displaystyle \frac{1}{8(x+2)}=1

Now, distribute the eight.

\displaystyle \frac{1}{8x+16}=1

Next, multiply both sides by the denominator.

\displaystyle (8x+16)\times \frac{1}{8x+16}=1\times (8x+16)

The (8x+16) cancels out and leaves the following equation.

\displaystyle 1=8x+16

Now to solve for \displaystyle x perform opposite operations to move all numerical values to one side of the equation leaving \displaystyle x by itself on the other side of the equation.

\displaystyle \\1=8x+16 \\-15=8x \\\\\frac{-15}{8}=x

Learning Tools by Varsity Tutors