SAT Math : Algebra

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1121 : Algebra

Solve for \displaystyle Q.

\displaystyle 3r+5t=\frac{-4Q+5z}{2}

Possible Answers:

\displaystyle Q=\frac{6r+10t+5z}{-4}

\displaystyle Q=\frac{6r+10t-5z}{-4}

\displaystyle Q=\frac{6r+10t+5z}{4}

\displaystyle Q=\frac{6r+10t-z}{-4}

Correct answer:

\displaystyle Q=\frac{6r+10t-5z}{-4}

Explanation:

\displaystyle 3r+5t=\frac{-4Q+5z}{2}

Multiply by \displaystyle 2 on each side

\displaystyle 2(3r+5t)=-4Q+5z

Expand right side

\displaystyle 6r+10t=-4Q+5z

Subtract \displaystyle 5z on each side

\displaystyle -4Q=6r+10t-5z

Divide by \displaystyle -4 on each side

\displaystyle Q=\frac{6r+10t-5z}{-4}

Example Question #1122 : Algebra

If a rocket is shot from the ground, and it takes \displaystyle 5 \sec to reach a height of \displaystyle 500\:\text{m}. Determine the equation of its trajectory.

Possible Answers:

\displaystyle y=10x

\displaystyle y=100x

\displaystyle y=500x

\displaystyle y=-100x

\displaystyle y=50x

Correct answer:

\displaystyle y=100x

Explanation:

To figure out what the equation is, we need to use the point-slope form.

\displaystyle y-y_0=m(x-x_0), where \displaystyle m is the slope, and \displaystyle (x_0, y_0) is a point.

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

In this example, \displaystyle y_2=500, y_1=0, x_2=5, x_1=0

\displaystyle \text{Slope}=\frac{500-0}{5-0}=100

\displaystyle y-0=100(x-0)

\displaystyle y=100x

Example Question #1123 : Algebra

Screen shot 2016 02 18 at 1.42.15 pm

Determine the x-intercepts in the graph above.

Possible Answers:

Not enough information

\displaystyle 1

\displaystyle 2

\displaystyle 0

Correct answer:

\displaystyle 2

Explanation:

The x-intercepts are the points on the graph where the \displaystyle y=0 line touches or intersects the x axis. By looking at the graph, there are two points. One at \displaystyle x=2, and then another one at \displaystyle x=3. So there are two x intercepts. 

Example Question #153 : How To Find F(X)

Stuff animals were a strange craze of the 90's. A Cat stuff animal with white paws sold for $6 in 1997. In 2015, the Cat will sell for $1015. What has been the approximate rate of growth for these stuff animal felines?

Possible Answers:

\displaystyle 3.2 \%

\displaystyle 33 \%

\displaystyle 13.29 \%

\displaystyle 168 \%

\displaystyle 16.8 \%

Correct answer:

\displaystyle 33 \%

Explanation:

Use the formula for exponential growth \displaystyle y = A*(1+r)^t where y is the current value, A is the initial value, r is the rate of growth, and t is time. Between 1997 and 2015, 18 years passed, so use \displaystyle t=18. The stuffed animal was originally worth $6, so \displaystyle A=6. It is now worth $1,015, so \displaystyle y=1015.

Our equation is now:

\displaystyle 1015 = 6*(1+r)^{18} divide by 6:

\displaystyle 169.1\overline{6}=(1+r)^{18} take both sides to the power of \displaystyle \frac{1}{18}=0.0\overline{5}:

\displaystyle 1.329 \approx 1+r subtract 1

\displaystyle 0.329 = r

As a percent, r is about 33%.

 

Example Question #1124 : Algebra

The population of a city will decrease by 15 percent every 50 years and the population starts at 120,000 people. Construct a function that describes this situation.

Possible Answers:

\displaystyle P(t)=120,000(0.80)^{\frac{t}{50}}

\displaystyle P(t)=120,000(0.85)^{50t}

\displaystyle P(t)=120,000(0.15)^{\frac{t}{50}}

\displaystyle P(t)=120,000(0.85)^t

\displaystyle P(t)=120,000(0.85)^{\frac{t}{50}}

Correct answer:

\displaystyle P(t)=120,000(0.85)^{\frac{t}{50}}

Explanation:

To construct a function that describes this situation first identify what is known.

Since this particular situation is talking about population decrease, the function will be an exponential decay.

Recall that an exponential decay function is in the form,

\displaystyle P(t)=I(1-r)^{t}

 

where,

\displaystyle \\P(t)=\text{ Finial population} \\I=\text{ Initial population} \\r=\text{ Rate} \\t=\text{Time}

Since the statements says that the population decreases every 50 years we can rewrite the general form to,

\displaystyle P(t)=I(1-r)^{\frac{t}{50}}

Now substituting in the known values, the function can be written. 

\displaystyle P(t)=120,000(0.85)^{\frac{t}{50}}

Example Question #1125 : Algebra

Screen shot 2016 02 18 at 2.50.12 pm

The above graph shows supply and demand for a particular Product. What is the equation for the demand of this product?

Possible Answers:

\displaystyle y=4x+50

\displaystyle y=-2x+50

\displaystyle y=2x+50

\displaystyle y=-4x+50

\displaystyle y=-4x

Correct answer:

\displaystyle y=-4x+50

Explanation:

We can determine the demand equation by using point slope form.

Point slope form is \displaystyle y-y_0=m(x-x_0), where \displaystyle (x_0, y_0), and \displaystyle m is the slope, where \displaystyle m=\frac{y_2-y_1}{x_2-x_1}.

Let \displaystyle y_2=50\displaystyle y_1=10\displaystyle x_2=0, and \displaystyle x_1=10.

\displaystyle m=\frac{50-10}{0-10}=-4

Now we have

\displaystyle y-y_0=-4(x-x_0)

Choose a point \displaystyle (0,50),

\displaystyle y-50=-4(x-0)

\displaystyle y=-4x+50

Example Question #1126 : Algebra

Screen shot 2016 02 18 at 2.50.12 pm

If the equation of the demand line is \displaystyle y=-4x+50, and the equation for supply is \displaystyle y=5x, determine the point where supply and demand is the same.

Possible Answers:

\displaystyle x=\frac{500}{9}

\displaystyle x=\frac{5}{9}

\displaystyle x=\frac{14}{9}

\displaystyle x=6

\displaystyle x=\frac{50}{9}

Correct answer:

\displaystyle x=\frac{50}{9}

Explanation:

To solve this, all we need to do is set the equations equal to each other.

\displaystyle -4x+50=5x

Now solve for \displaystyle x

\displaystyle 50=9x

\displaystyle x=\frac{50}{9}

Example Question #1127 : Algebra

Amanda has \displaystyle 5000 ants in an ant farm and their population grows \displaystyle 20\% annually. How many ants will be in Amanda's ant farm in 6 years?

Possible Answers:

\displaystyle 14920

\displaystyle 14700

\displaystyle 15000

\displaystyle 14900

\displaystyle 14930

Correct answer:

\displaystyle 14930

Explanation:

This is an exponential growth problem, so let's recall the equation for exponential growth.

\displaystyle P(t)=P(1+r)^t, where \displaystyle P is the starting amount of ants, \displaystyle r is the growth rate, and \displaystyle t is the time in years.

First step is to convert \displaystyle 20\% into a decimal. \displaystyle 20\%=0.20

\displaystyle P(t)=5000(1+0.20)^t

\displaystyle P(t)=5000(1.20)^t

\displaystyle P(6)=5000(1.20)^6=14930

So in 6 years, Amanda will have \displaystyle 14930 ants.

 

Example Question #1128 : Algebra

The equation for the universal gravitation is \displaystyle F_g=\frac{Gm_1m_2}{r^2}\displaystyle m_1=\text{mass of object 1}\displaystyle m_2=\text{mass of object 2}\displaystyle r=\text{radius between masses}, and \displaystyle G is the universal gravitational constant. If \displaystyle m_1=10 \ kg\displaystyle m_2=20 \ kg,\displaystyle F_g=1.34\times10^{-12} N and \displaystyle G=6.67408 \times 10^{-11} m^3 kg^{-1} s^{-2}, what is the radius between the two masses? Round to the nearest tenth.

Hint: \displaystyle \frac{\text{kg\:m}}{s^2}=1 \text{Newton}

Possible Answers:

\displaystyle r=99.60\ m

\displaystyle r=100\ m

\displaystyle r=99.70\ m

\displaystyle r=99.90\ m

\displaystyle r=99.80\ m

Correct answer:

\displaystyle r=99.80\ m

Explanation:

The first step is to plug in all the values into the equation.

\displaystyle 1.34\times10^{-12} N=\frac{6.67408\times10^{-11}m^3kg^{-1}s^{-2}\cdot 10kg\cdot 20kg}{r^2}

Now we will solve for \displaystyle r.

\displaystyle r^2=-\frac{6.67408\times10^{-11}m^3kg^{-1}s^{-2}\cdot 10kg\cdot 20kg}{1.34\times10^{-12} N}

\displaystyle r^2=\frac{1.334816\times10^{-8}m^3kg^{-1}s^{-2} kg^2}{1.34\times10^{-12} N}

 

\displaystyle r^2=9961.313\:m^2

 

Take the square root on each side

 

\displaystyle r=\sqrt{9961.313\:m^2}=99.80\ m

Example Question #201 : Algebraic Functions

If \displaystyle g(x) = 3x+2, what is the value of \displaystyle g(-2)?

Possible Answers:

\displaystyle 0

\displaystyle -8

\displaystyle -4

\displaystyle 8

Correct answer:

\displaystyle -4

Explanation:

\displaystyle g(x) = 3x+2

\displaystyle g(-2) = 3(-2)+2=-6+2=-4

Learning Tools by Varsity Tutors