SAT Critical Reading : Summarizing and Describing Natural Science Passage Content

Study concepts, example questions & explanations for SAT Critical Reading

varsity tutors app store varsity tutors android store varsity tutors amazon store varsity tutors ibooks store

Example Questions

← Previous 1

Example Question #1 : Locating Details In Narrative Science Passages

Adapted from The Evolutionist at Large by Grant Allen (1881)

I am engaged in watching a brigade of ants out on foraging duty, and intent on securing for the nest three whole segments of a deceased earthworm. They look for all the world like those busy companies one sees in the Egyptian wall paintings, dragging home a huge granite colossus by sheer force of bone and sinew. Every muscle in their tiny bodies is strained to the utmost as they pry themselves laboriously against the great boulders that strew the path, and that are known to our Brobdingnagian intelligence as grains of sand. Besides the workers themselves, a whole battalion of stragglers runs to and fro upon the broad line that leads to the headquarters of the community. The province of these stragglers, who seem so busy doing nothing, probably consists in keeping communications open, and encouraging the sturdy pullers by occasional relays of fresh workmen. I often wish that I could for a while get inside those tiny brains, and see, or rather smell, the world as ants do. For there can be little doubt that to these brave little carnivores here the universe is chiefly known as a collective bundle of odors, simultaneous or consecutive. As our world is mainly a world of visible objects, theirs, I believe, is mainly a world of olfactible things.

In the head of every one of these little creatures is something that we may fairly call a brain. Of course most insects have no real brains; the nerve-substance in their heads is a mere collection of ill-arranged ganglia, directly connected with their organs of sense. Whatever man may be, an earwig at least is a conscious, or rather a semi-conscious, automaton. He has just a few knots of nerve cells in his little pate, each of which leads straight from his dim eye or his vague ear or his indefinite organs of taste; and his muscles obey the promptings of external sensations without possibility of hesitation or consideration, as mechanically as the valve of a steam engine obeys the governor balls. The poor soul's intellect is wholly deficient, and the senses alone make up all that there is of him, subjectively considered. But it is not so with the highest insects. They have something that truly answers to the real brain of men, apes, and dogs, to the cerebral hemispheres and the cerebellum that are superadded in us mammals upon the simple sense-centers of lower creatures. Besides the eye, with its optic nerve and optic perceptive organs—besides the ear, with its similar mechanism—we mammalian lords of creation have a higher and more genuine brain, that collects and compares the information given to the senses, and sends down the appropriate messages to the muscles accordingly. Now, bees and flies and ants have got much the same sort of arrangement, on a smaller scale, within their tiny heads. On top of the little knots that do duty as nerve centers for their eyes and mouths, stand two stalked bits of nervous matter, whose duty is analogous to that of our own brains. And that is why these three sorts of insects think and reason so much more intellectually than beetles or butterflies, and why the larger part of them have organized their domestic arrangements on such an excellent cooperative plan.

We know well enough what forms the main material of thought with bees and flies, and that is visible objects. For you must think about something if you think at all; and you can hardly imagine a contemplative blow-fly setting itself down to reflect, like a Hindu devotee, on the syllable Om, or on the oneness of existence. Abstract ideas are not likely to play a large part in apian consciousness. A bee has a very perfect eye, and with this eye it can see not only form, but also color, as Sir John Lubbock's experiments have shown us. The information that it gets through its eye, coupled with other ideas derived from touch, smell, and taste, no doubt makes up the main thinkable and knowable universe as it reveals itself to the apian intelligence. To ourselves and to bees alike the world is, on the whole, a colored picture, with the notions of distance and solidity thrown in by touch and muscular effort; but sight undoubtedly plays the first part in forming our total conception of things generally.

The passage states that which of the following is true?

Possible Answers:

The ants are helping the earthworm.

Some ants who seem idle are in all probability aiding in communication. 

The ants move sand, rocks, and gravel to build a complex, yet sturdy, nest.

Ants do not have a relay, or shift, system for working.

Ants are herbivorous.

Correct answer:

Some ants who seem idle are in all probability aiding in communication. 

Explanation:

The passage tells us that the ants that seem idle are most likely keeping paths of communication open: “The province of these stragglers, who seem so busy doing nothing, probably consists in keeping communications open, and encouraging the sturdy pullers by occasional relays of fresh workmen.” This section of text also proves that the answer "Ants do not have a relay, or shift, system for working" is false. The other answers, in turn, are proven false by the first paragraph or are unsubstantiated by the passage.

Example Question #1 : Drawing Generalizations About Natural Science Passages

Adapted from Common Diseases of Farm Animals by R. A. Craig (1916, 2nd ed.)

The common bot-fly of the horse (G. equi) has a heavy, hairy body. Its color is brown, with dark and yellowish spots. The female fly can be seen during the warm weather, hovering around the horse, and darting toward the animal for the purpose of depositing the egg. The color of the egg is yellow, and it adheres firmly to the hair. It hatches in from two to four weeks, and the larva reaches the mouth through the animal licking the part. From the mouth, it passes to the stomach, where it attaches itself to the gastric mucous membrane. Here it remains until fully developed, when it becomes detached and is passed out with the feces. The third stage is passed in the ground. This takes place in the spring and early summer and lasts for several weeks, when it finally emerges a mature fly.

The bot-fly of the ox (H. lineata) is dark in color and about the size of a honey-bee. On warm days, the female may be seen depositing eggs on the body of the animal, especially in the region of the heels. This seems to greatly annoy the animal, and it is not uncommon for cattle to become stampeded. The egg reaches the mouth through the animal licking the part. The saliva dissolves the shell of the egg and the larva is freed. It then migrates from the gullet, wanders about in the tissue until finally it may reach a point beneath the skin of the back. Here the larva matures and forms the well-known swelling or warble. In the spring of the year it works out through the skin. The next stage is spent in the ground. The pupa state lasts several weeks, when the mature fly issues forth.

The bot-fly of sheep (O. ovis) resembles an overgrown house-fly. Its general color is brown, and it is apparently lazy, flying about very little. This bot-fly makes its appearance when the warm weather begins, and deposits live larvae in the nostrils of sheep. This act is greatly feared by the animals, as shown by their crowding together and holding the head down. The larva works up the nasal cavities and reaches the sinuses of the head, where it becomes attached to the lining mucous membrane. In the spring, when fully developed, it passes out through the nasal cavities and nostrils, drops to the ground, buries itself, and in from four to six weeks develops into the mature fly.

SYMPTOMS OF BOT-FLY DISEASES.—The larvae of the bot-fly of the horse do not cause characteristic symptoms of disease. Work horses that are groomed daily are not hosts for a large number of "bots," but young and old horses that are kept in a pasture or lot and seldom groomed may become unthrifty and "pot bellied," or show symptoms of indigestion.

Cattle suffer much pain from the development of the larva of the H. lineata. During the spring of the year, the pain resulting from the presence of the larvae beneath the skin and the penetration of the skin is manifested by excitement and running about. Besides the loss in milk and beef production, there is a heavy yearly loss from the damage to hides.

The life of the bot-fly of sheep results in a severe catarrhal inflammation of the mucous membrane lining the sinuses of the head, and a discharge of a heavy, pus-like material from the nostrils. The irritation produced by the larvae may be so serious at times as to result in nervous symptoms and death.

Which of the following sentences best summarizes the fourth paragraph?

Possible Answers:

Young and old horses are not consistently attacked by the bot-fly, but adult horses are continuously attacked by the bot-fly.

Horses with matted hair are less susceptible to an infestation as they lick themselves less frequently.

If a horse shows symptoms of bot-fly larvae, then it should be groomed, although this does not apply to very young or very old animals.

A horse must be groomed twice a year to avoid the symptoms of bot-fly larvae.

Horses show few symptoms and are more protected if they are groomed, unlike those left in pastures.

Correct answer:

Horses show few symptoms and are more protected if they are groomed, unlike those left in pastures.

Explanation:

The paragraph states three things: firstly, bot-fly larvae “do not cause characteristic symptoms of disease”; secondly, “horses that are groomed daily are not hosts for a large number of 'bots'”; and thirdly, “young and old horses that are kept in a pasture or lot and seldom groomed may become unthrifty and 'pot bellied,' or show symptoms of indigestion.” From this, we can conclude that the correct answer is "Horses show few symptoms and are more protected if they are groomed, unlike those left in pastures."

Example Question #3 : Summarizing And Describing Natural Science Passage Content

Adapted from Common Diseases of Farm Animals by R. A. Craig (1916, 2nd ed.)

The common bot-fly of the horse (G. equi) has a heavy, hairy body. Its color is brown, with dark and yellowish spots. The female fly can be seen during the warm weather, hovering around the horse, and darting toward the animal for the purpose of depositing the egg. The color of the egg is yellow, and it adheres firmly to the hair. It hatches in from two to four weeks, and the larva reaches the mouth through the animal licking the part. From the mouth, it passes to the stomach, where it attaches itself to the gastric mucous membrane. Here it remains until fully developed, when it becomes detached and is passed out with the feces. The third stage is passed in the ground. This takes place in the spring and early summer and lasts for several weeks, when it finally emerges a mature fly.

The bot-fly of the ox (H. lineata) is dark in color and about the size of a honey-bee. On warm days, the female may be seen depositing eggs on the body of the animal, especially in the region of the heels. This seems to greatly annoy the animal, and it is not uncommon for cattle to become stampeded. The egg reaches the mouth through the animal licking the part. The saliva dissolves the shell of the egg and the larva is freed. It then migrates from the gullet, wanders about in the tissue until finally it may reach a point beneath the skin of the back. Here the larva matures and forms the well-known swelling or warble. In the spring of the year it works out through the skin. The next stage is spent in the ground. The pupa state lasts several weeks, when the mature fly issues forth.

The bot-fly of sheep (O. ovis) resembles an overgrown house-fly. Its general color is brown, and it is apparently lazy, flying about very little. This bot-fly makes its appearance when the warm weather begins, and deposits live larvae in the nostrils of sheep. This act is greatly feared by the animals, as shown by their crowding together and holding the head down. The larva works up the nasal cavities and reaches the sinuses of the head, where it becomes attached to the lining mucous membrane. In the spring, when fully developed, it passes out through the nasal cavities and nostrils, drops to the ground, buries itself, and in from four to six weeks develops into the mature fly.

SYMPTOMS OF BOT-FLY DISEASES.—The larvae of the bot-fly of the horse do not cause characteristic symptoms of disease. Work horses that are groomed daily are not hosts for a large number of "bots," but young and old horses that are kept in a pasture or lot and seldom groomed may become unthrifty and "pot bellied," or show symptoms of indigestion.

Cattle suffer much pain from the development of the larva of the H. lineata. During the spring of the year, the pain resulting from the presence of the larvae beneath the skin and the penetration of the skin is manifested by excitement and running about. Besides the loss in milk and beef production, there is a heavy yearly loss from the damage to hides.

The life of the bot-fly of sheep results in a severe catarrhal inflammation of the mucous membrane lining the sinuses of the head, and a discharge of a heavy, pus-like material from the nostrils. The irritation produced by the larvae may be so serious at times as to result in nervous symptoms and death.

The fifth paragraph states that which of the following is true?

Possible Answers:

Bot-fly larvae emerge in the summer months.

Bot-flies can be financially crippling to a farmer. 

Cattle are not susceptible to the results of an infestation of bot-fly larvae.

A bot-fly infestation makes cows lethargic.

O. ovis larvae break out through the cow’s skin.

Correct answer:

Bot-flies can be financially crippling to a farmer. 

Explanation:

We can infer that an infestation of bot-fly larvae in cattle is financially crippling to a farmer, as it says that meat, milk and hide production can be affected. This would result in a farmer making less money from his animals.

Example Question #641 : Ssat Upper Level Reading Comprehension

Adapted from Common Diseases of Farm Animals by R. A. Craig (1916, 2nd ed.)

The common bot-fly of the horse (G. equi) has a heavy, hairy body. Its color is brown, with dark and yellowish spots. The female fly can be seen during the warm weather, hovering around the horse, and darting toward the animal for the purpose of depositing the egg. The color of the egg is yellow, and it adheres firmly to the hair. It hatches in from two to four weeks, and the larva reaches the mouth through the animal licking the part. From the mouth, it passes to the stomach, where it attaches itself to the gastric mucous membrane. Here it remains until fully developed, when it becomes detached and is passed out with the feces. The third stage is passed in the ground. This takes place in the spring and early summer and lasts for several weeks, when it finally emerges a mature fly.

The bot-fly of the ox (H. lineata) is dark in color and about the size of a honey-bee. On warm days, the female may be seen depositing eggs on the body of the animal, especially in the region of the heels. This seems to greatly annoy the animal, and it is not uncommon for cattle to become stampeded. The egg reaches the mouth through the animal licking the part. The saliva dissolves the shell of the egg and the larva is freed. It then migrates from the gullet, wanders about in the tissue until finally it may reach a point beneath the skin of the back. Here the larva matures and forms the well-known swelling or warble. In the spring of the year it works out through the skin. The next stage is spent in the ground. The pupa state lasts several weeks, when the mature fly issues forth.

The bot-fly of sheep (O. ovis) resembles an overgrown house-fly. Its general color is brown, and it is apparently lazy, flying about very little. This bot-fly makes its appearance when the warm weather begins, and deposits live larvae in the nostrils of sheep. This act is greatly feared by the animals, as shown by their crowding together and holding the head down. The larva works up the nasal cavities and reaches the sinuses of the head, where it becomes attached to the lining mucous membrane. In the spring, when fully developed, it passes out through the nasal cavities and nostrils, drops to the ground, buries itself, and in from four to six weeks develops into the mature fly.

SYMPTOMS OF BOT-FLY DISEASES.—The larvae of the bot-fly of the horse do not cause characteristic symptoms of disease. Work horses that are groomed daily are not hosts for a large number of "bots," but young and old horses that are kept in a pasture or lot and seldom groomed may become unthrifty and "pot bellied," or show symptoms of indigestion.

Cattle suffer much pain from the development of the larva of the H. lineata. During the spring of the year, the pain resulting from the presence of the larvae beneath the skin and the penetration of the skin is manifested by excitement and running about. Besides the loss in milk and beef production, there is a heavy yearly loss from the damage to hides.

The life of the bot-fly of sheep results in a severe catarrhal inflammation of the mucous membrane lining the sinuses of the head, and a discharge of a heavy, pus-like material from the nostrils. The irritation produced by the larvae may be so serious at times as to result in nervous symptoms and death.

One of the main points made in the last paragraph is that __________.

Possible Answers:

the larvae of O. ovis emerge as flies from the mouth of the sheep

the larvae of O. ovis can cause clotting and death in sheep

the larvae of O. ovis cause an emission of pus from the nose of the sheep

bot-flies can cause sheeps' wool to become matted

O. ovis is not unique to sheep

Correct answer:

the larvae of O. ovis cause an emission of pus from the nose of the sheep

Explanation:

The author never states that O. ovis is found in other animals so we can assume that it is unique to sheep. The second line tells us that the larvae can cause “discharge of a heavy, pus-like material from the nostrils.” Which corresponds with the statement: “The larvae cause an emission of pus from the nose of the sheep.”

Example Question #1 : Summarizing And Describing Natural Science Passage Content

Adapted from Common Diseases of Farm Animals by R. A. Craig (1916, 2nd ed.)

The common bot-fly of the horse (G. equi) has a heavy, hairy body. Its color is brown, with dark and yellowish spots. The female fly can be seen during the warm weather, hovering around the horse, and darting toward the animal for the purpose of depositing the egg. The color of the egg is yellow, and it adheres firmly to the hair. It hatches in from two to four weeks, and the larva reaches the mouth through the animal licking the part. From the mouth, it passes to the stomach, where it attaches itself to the gastric mucous membrane. Here it remains until fully developed, when it becomes detached and is passed out with the feces. The third stage is passed in the ground. This takes place in the spring and early summer and lasts for several weeks, when it finally emerges a mature fly.

The bot-fly of the ox (H. lineata) is dark in color and about the size of a honey-bee. On warm days, the female may be seen depositing eggs on the body of the animal, especially in the region of the heels. This seems to greatly annoy the animal, and it is not uncommon for cattle to become stampeded. The egg reaches the mouth through the animal licking the part. The saliva dissolves the shell of the egg and the larva is freed. It then migrates from the gullet, wanders about in the tissue until finally it may reach a point beneath the skin of the back. Here the larva matures and forms the well-known swelling or warble. In the spring of the year it works out through the skin. The next stage is spent in the ground. The pupa state lasts several weeks, when the mature fly issues forth.

The bot-fly of sheep (O. ovis) resembles an overgrown house-fly. Its general color is brown, and it is apparently lazy, flying about very little. This bot-fly makes its appearance when the warm weather begins, and deposits live larvae in the nostrils of sheep. This act is greatly feared by the animals, as shown by their crowding together and holding the head down. The larva works up the nasal cavities and reaches the sinuses of the head, where it becomes attached to the lining mucous membrane. In the spring, when fully developed, it passes out through the nasal cavities and nostrils, drops to the ground, buries itself, and in from four to six weeks develops into the mature fly.

SYMPTOMS OF BOT-FLY DISEASES.—The larvae of the bot-fly of the horse do not cause characteristic symptoms of disease. Work horses that are groomed daily are not hosts for a large number of "bots," but young and old horses that are kept in a pasture or lot and seldom groomed may become unthrifty and "pot bellied," or show symptoms of indigestion.

Cattle suffer much pain from the development of the larva of the H. lineata. During the spring of the year, the pain resulting from the presence of the larvae beneath the skin and the penetration of the skin is manifested by excitement and running about. Besides the loss in milk and beef production, there is a heavy yearly loss from the damage to hides.

The life of the bot-fly of sheep results in a severe catarrhal inflammation of the mucous membrane lining the sinuses of the head, and a discharge of a heavy, pus-like material from the nostrils. The irritation produced by the larvae may be so serious at times as to result in nervous symptoms and death.

The first paragraph establishes all of the following about the common bot-fly of the horse EXCEPT that __________.

Possible Answers:

the abbreviated scientific name for the horse bot-fly is G. equi

it exits the body in the animal’s dung

the larvae develop in the stomach

the eggs of the fly stick to the horse’s hair

it takes six weeks to hatch

Correct answer:

it takes six weeks to hatch

Explanation:

We know that it does not take six weeks to hatch as the paragraph states that: “It hatches in from two to four weeks.” The sheep bot fly takes six weeks to transform into its fly stage but this is discussed in the third, not first, paragraph.

Example Question #1 : Summarizing And Describing Natural Science Passage Content

Adapted from Ice-Caves of France and Switzerland by George Forrest Browne (1865)

This account states that the cave is in the county of Thorn, among the lowest spurs of the Carpathians. The entrance, which faces the north, and is exposed to the cold winds from the snowy part of the Carpathian range, is eighteen fathoms high and nine broad; and the cave spreads out laterally, and descends to a point fifty fathoms below the entrance, where it is twenty-six fathoms in breadth, and of irregular height. Beyond this no one had at that time penetrated, on account of the unsafe footing, although many distant echoes were returned by the farther recesses of the cave; indeed, to get even so far as this, much step-cutting was necessary.

When the external frost of winter comes on, the account proceeds, the effect in the cave is the same as if fires had been lighted there: the ice melts, and swarms of flies and bats and hares take refuge in the interior from the severity of the winter. As soon as spring arrives, the warmth of winter disappears from the interior, water exudes from the roof and is converted into ice, while the more abundant supplies which pour down on to the sandy floor are speedily frozen there. In the dog-days, the frost is so intense that a small icicle becomes in one day a huge mass of ice; but a cool day promptly brings a thaw, and the cave is looked upon as a barometer, not merely feeling, but also presaging, the changes of weather. The people of the neighborhood, when employed in field-work, arrange their labour so that the mid-day meal may be taken near the cave, when they either ice the water they have brought with them, or drink the melted ice, which they consider very good for the stomach. It had been calculated that six hundred weekly carts would not be sufficient to keep the cavern free from ice. The ground above the cave is peculiarly rich in grass.

In explanation of these phenomena, Bell threw out the following suggestions, which need no comment. The earth being of itself cold and damp, the external heat of the atmosphere, by partially penetrating into the ground, drives in this native cold to the inner parts of the earth, and makes the cold there more dense. On the other hand, when the external air is cold, it draws forth towards the surface the heat there may be in the inner part of the earth, and thus makes caverns warm. In support and illustration of this view, he states that in the hotter parts of Hungary, when the people wish to cool their wine, they dig a hole two feet deep, and place in it the flagon of wine, and, after filling up the hole again, light a blazing fire upon the surface, which cools the wine as if the flagon had been laid in ice. He also suggests that possibly the cold winds from the Carpathians bring with them imperceptible particles of snow, which reach the water of the cave, and convert it into ice. Further, the rocks of the Carpathians abound in salts, nitre, alum, etc., which may, perhaps, mingle with such snowy particles, and produce the ordinary effect of the snow and salt in the artificial production of ice.

The passage states that which of the following is true?

Possible Answers:

The cave is used for accommodation at times.

Hungarians drink warmed wine.

The ice taken from the cave is sold.

The deposits of minerals may affect the temperature of the cave. 

Snow solely converts the water in the cave to ice.

Correct answer:

The deposits of minerals may affect the temperature of the cave. 

Explanation:

The last line of the last paragraph states that “Further, the rocks of the Carpathians abound in salts, nitre, alum, etc., which may, perhaps, mingle with such snowy particles, and produce the ordinary effect of the snow and salt in the artificial production of ice.” This suggests that the mineral salts in the rocks have the effect of cooling the cave by mixing with snow.

Example Question #31 : Main Idea, Details, Opinions, And Arguments In Narrative Science Passages

Adapted from Ice-Caves of France and Switzerland by George Forrest Browne (1865)

This account states that the cave is in the county of Thorn, among the lowest spurs of the Carpathians. The entrance, which faces the north, and is exposed to the cold winds from the snowy part of the Carpathian range, is eighteen fathoms high and nine broad; and the cave spreads out laterally, and descends to a point fifty fathoms below the entrance, where it is twenty-six fathoms in breadth, and of irregular height. Beyond this no one had at that time penetrated, on account of the unsafe footing, although many distant echoes were returned by the farther recesses of the cave; indeed, to get even so far as this, much step-cutting was necessary.

When the external frost of winter comes on, the account proceeds, the effect in the cave is the same as if fires had been lighted there: the ice melts, and swarms of flies and bats and hares take refuge in the interior from the severity of the winter. As soon as spring arrives, the warmth of winter disappears from the interior, water exudes from the roof and is converted into ice, while the more abundant supplies which pour down on to the sandy floor are speedily frozen there. In the dog-days, the frost is so intense that a small icicle becomes in one day a huge mass of ice; but a cool day promptly brings a thaw, and the cave is looked upon as a barometer, not merely feeling, but also presaging, the changes of weather. The people of the neighborhood, when employed in field-work, arrange their labour so that the mid-day meal may be taken near the cave, when they either ice the water they have brought with them, or drink the melted ice, which they consider very good for the stomach. It had been calculated that six hundred weekly carts would not be sufficient to keep the cavern free from ice. The ground above the cave is peculiarly rich in grass.

In explanation of these phenomena, Bell threw out the following suggestions, which need no comment. The earth being of itself cold and damp, the external heat of the atmosphere, by partially penetrating into the ground, drives in this native cold to the inner parts of the earth, and makes the cold there more dense. On the other hand, when the external air is cold, it draws forth towards the surface the heat there may be in the inner part of the earth, and thus makes caverns warm. In support and illustration of this view, he states that in the hotter parts of Hungary, when the people wish to cool their wine, they dig a hole two feet deep, and place in it the flagon of wine, and, after filling up the hole again, light a blazing fire upon the surface, which cools the wine as if the flagon had been laid in ice. He also suggests that possibly the cold winds from the Carpathians bring with them imperceptible particles of snow, which reach the water of the cave, and convert it into ice. Further, the rocks of the Carpathians abound in salts, nitre, alum, etc., which may, perhaps, mingle with such snowy particles, and produce the ordinary effect of the snow and salt in the artificial production of ice.

The second paragraph establishes all of the following EXCEPT __________.

Possible Answers:

the area above the cave is verdant

animals shelter in the cave in winter

the cave is warm when it is cold outside and vice versa

icicles grow rapidly in high summer

cutting steps into the cave was necessary

Correct answer:

cutting steps into the cave was necessary

Explanation:

The correct answer is established in the first, not the second, paragraph. The second paragraph states that the temperature in the cave is contrary to that outside it. It also states that animals take shelter in it in winter and that the ground above it is grassy, or “verdant.” In the latter half of the paragraph, the author states that in the “dog-days” or high summer, the icicles become huge masses of ice over a short time.

Example Question #8 : Summarizing And Describing Natural Science Passage Content

Adapted from A Practical Treatise on the Hive and Honey-Bee by Lorenzo Lorraine Langstroth (1857 ed.)

Of all the numerous enemies of the honey-bee, the Bee-Moth (Tinea mellonella), in climates of hot summers, is by far the most to be dreaded. So widespread and fatal have been its ravages in this country that thousands have abandoned the cultivation of bees in despair, and in districts which once produced abundant supplies of the purest honey, bee-keeping has gradually dwindled down into a very insignificant pursuit. Contrivances almost without number have been devised to defend the bees against this invidious foe, but still it continues its desolating inroads, almost unchecked, laughing as it were to scorn at all the so-called "moth-proof" hives, and turning many of the ingenious fixtures designed to entrap or exclude it into actual aids and comforts in its nefarious designs.

I should feel but little confidence in being able to reinstate bee-keeping in our country into a certain and profitable pursuit if I could not show the apiarian in what way he can safely bid defiance to the pestiferous assaults of this, his most implacable enemy. I have patiently studied its habits for years, and I am at length able to announce a system of management founded upon the peculiar construction of my hives, which will enable the careful bee-keeper to protect his colonies against the monster. The bee-moth infects our apiaries, just as weeds take possession of a fertile soil. Before explaining the means upon which I rely to circumvent the moth, I will first give a brief description of its habits.

Swammerdam, towards the close of the seventeenth century, gave a very accurate description of this insect, which was then called by the very expressive name of the "bee-wolf." He has furnished good drawings of it, in all its changes, from the worm to the perfect moth, together with the peculiar webs or galleries that it constructs and from which the name of Tinea galleria or “gallery moth” has been given to it by some entomologists. He failed, however, to discriminate between the male and female, which, because they differ so much in size and appearance, he supposed to be two different species of the wax-moth. It seems to have been a great pest in his time, and even Virgil speaks of the "dirum tineæ genus," the dreadful offspring of the moth; that is the worm.

This destroyer usually makes its appearance about the hives in April or May, the time of its coming depending upon the warmth of the climate or the forwardness of the season. It is seldom seen on the wing (unless startled from its lurking place about the hive) until towards dark, and is evidently chiefly nocturnal in its habits. In dark cloudy days, however, I have noticed it on the wing long before sunset, and if several such days follow in succession, the female, oppressed with the urgent necessity of laying her eggs, may be seen endeavoring to gain admission to the hives. The female is much larger than the male, and "her color is deeper and more inclining to a darkish gray, with small spots or blackish streaks on the interior edge of her upper wings." The color of the male inclines more to a light gray; they might easily be mistaken for different species of moths. These insects are surprisingly agile, both on foot and on the wing. The motions of a bee are very slow in comparison. "They are," says Reaumur, "the most nimble-footed creatures that I know." "If the approach to the apiary be observed of a moonlight evening, the moths will be found flying or running round the hives, watching an opportunity to enter, whilst the bees that have to guard the entrances against their intrusion will be seen acting as vigilant sentinels, performing continual rounds near this important post, extending their antenna to the utmost, and moving them to the right and left alternately. Woe to the unfortunate moth that comes within their reach!" "It is curious," says Huber, "to observe how artfully the moth knows how to profit, to the disadvantage of the bees, which require much light for seeing objects; and the precautions taken by the latter in reconnoitering and expelling so dangerous an enemy."

The first paragraph establishes all of the following EXCEPT __________.

Possible Answers:

in hot summers the bee-moth is the worst enemy of the honey bee

the ravages of the bee-moth have dissuaded many from continuing bee keeping

bee keeping has, in some areas, become a trifling hobby

the author has faith in the devices used to stop the bee-moth

many contraptions have been invented to try to stop the bee-moth

Correct answer:

the author has faith in the devices used to stop the bee-moth

Explanation:

The author does not believe the devices created to stop the bee-moth work, as he states in the first paragraph, “Contrivances almost without number, have been devised, to defend the bees against this invidious foe, but still it continues its desolating inroads, almost unchecked, laughing as it were to scorn, at all the so-called 'moth-proof' hives, and turning many of the ingenious fixtures designed to entrap or exclude it, into actual aids and comforts in its nefarious designs.” So, instead of being kept out of the beehives or killed by the traps or preventative measures, the moth instead uses them to get to the hive.

Example Question #1 : Summarizing And Describing Natural Science Passage Content

Adapted from A Practical Treatise on the Hive and Honey-Bee by Lorenzo Lorraine Langstroth (1857 ed.)

Of all the numerous enemies of the honey-bee, the Bee-Moth (Tinea mellonella), in climates of hot summers, is by far the most to be dreaded. So widespread and fatal have been its ravages in this country that thousands have abandoned the cultivation of bees in despair, and in districts which once produced abundant supplies of the purest honey, bee-keeping has gradually dwindled down into a very insignificant pursuit. Contrivances almost without number have been devised to defend the bees against this invidious foe, but still it continues its desolating inroads, almost unchecked, laughing as it were to scorn at all the so-called "moth-proof" hives, and turning many of the ingenious fixtures designed to entrap or exclude it into actual aids and comforts in its nefarious designs.

I should feel but little confidence in being able to reinstate bee-keeping in our country into a certain and profitable pursuit if I could not show the apiarian in what way he can safely bid defiance to the pestiferous assaults of this, his most implacable enemy. I have patiently studied its habits for years, and I am at length able to announce a system of management founded upon the peculiar construction of my hives, which will enable the careful bee-keeper to protect his colonies against the monster. The bee-moth infects our apiaries, just as weeds take possession of a fertile soil. Before explaining the means upon which I rely to circumvent the moth, I will first give a brief description of its habits.

Swammerdam, towards the close of the seventeenth century, gave a very accurate description of this insect, which was then called by the very expressive name of the "bee-wolf." He has furnished good drawings of it, in all its changes, from the worm to the perfect moth, together with the peculiar webs or galleries that it constructs and from which the name of Tinea galleria or “gallery moth” has been given to it by some entomologists. He failed, however, to discriminate between the male and female, which, because they differ so much in size and appearance, he supposed to be two different species of the wax-moth. It seems to have been a great pest in his time, and even Virgil speaks of the "dirum tineæ genus," the dreadful offspring of the moth; that is the worm.

This destroyer usually makes its appearance about the hives in April or May, the time of its coming depending upon the warmth of the climate or the forwardness of the season. It is seldom seen on the wing (unless startled from its lurking place about the hive) until towards dark, and is evidently chiefly nocturnal in its habits. In dark cloudy days, however, I have noticed it on the wing long before sunset, and if several such days follow in succession, the female, oppressed with the urgent necessity of laying her eggs, may be seen endeavoring to gain admission to the hives. The female is much larger than the male, and "her color is deeper and more inclining to a darkish gray, with small spots or blackish streaks on the interior edge of her upper wings." The color of the male inclines more to a light gray; they might easily be mistaken for different species of moths. These insects are surprisingly agile, both on foot and on the wing. The motions of a bee are very slow in comparison. "They are," says Reaumur, "the most nimble-footed creatures that I know." "If the approach to the apiary be observed of a moonlight evening, the moths will be found flying or running round the hives, watching an opportunity to enter, whilst the bees that have to guard the entrances against their intrusion will be seen acting as vigilant sentinels, performing continual rounds near this important post, extending their antenna to the utmost, and moving them to the right and left alternately. Woe to the unfortunate moth that comes within their reach!" "It is curious," says Huber, "to observe how artfully the moth knows how to profit, to the disadvantage of the bees, which require much light for seeing objects; and the precautions taken by the latter in reconnoitering and expelling so dangerous an enemy."

One of the main points made in the last section of the last paragraph is __________.

Possible Answers:

a critic has stated that the bee-moth takes advantage of the bee’s inability to see at night

the female bee-moth is a light gray in color

Huber believes that the bee-moths would be more successful if they entered the hive during the day

the author thinks that Huber is wrong in his assertions

it is not curious that bees defend against the bee-moth

Correct answer:

a critic has stated that the bee-moth takes advantage of the bee’s inability to see at night

Explanation:

The end of the last paragraph tells us that Huber has said that the bee-moth and the bees are curious in their behavior, as the moths seem to know that the bee cannot see well at night and the bees are quite determined to expel the moths from their nests.

Example Question #1 : Science Passages

Adapted from An Introduction to Astronomy by Forest Ray Moulton (1916 ed.)

The ancient Greeks, at a period four or five hundred years preceding the common era, definitely undertook to find from systematic observation how celestial phenomena follow one another. They determined very accurately the number of days in the year, the period of the moon's revolution, and the paths of the sun and the moon among the stars; they correctly explained the cause of eclipses and learned how to predict them with a considerable degree of accuracy; they undertook to measure the distances to the heavenly bodies, and to work out a complete system that would represent their motions. The idea was current among the Greek philosophers that the earth was spherical, that it turned on its axis, and, among some of them, that it revolved around the sun. They had true science in the modern acceptance of the term, but it was largely confined to the relations among celestial phenomena.

The conception that the heavens are orderly, which they definitely formulated and acted on with remarkable success, has been extended, especially in the last two centuries, so as to include the whole universe. The extension was first made to the inanimate world and then to the more complicated phenomena associated with living beings. Every increase in carefully recorded experience has confirmed and strengthened the belief that nature is perfectly orderly, until now every one who has had an opportunity of becoming familiar with any science is firmly convinced of the truth of this principle, which is the basis of all science.

Which of the following best summarizes this passage’s remarks on Greek science?

Possible Answers:

They did have a true science in one regard at least.

They were the only people to think the world was orderly.

None of the other answers

Their mania for celestial phenomena advanced science to a great degree.

Their work was the basis for modern astronomy.

Correct answer:

They did have a true science in one regard at least.

Explanation:

Throughout this passage, the author lays out the case that the Greeks had at least one science, namely something like what we would call "astronomy." Although they did not have many other sciences—in the opinion of the author, at least—they had at least this one branch of science "in the modern acceptance of the term."

← Previous 1
Learning Tools by Varsity Tutors