SAT Critical Reading : Passage-Based Questions

Study concepts, example questions & explanations for SAT Critical Reading

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #2 : Locating Details In Narrative Science Passages

Adapted from Ice-Caves of France and Switzerland by George Forrest Browne (1865)

This account states that the cave is in the county of Thorn, among the lowest spurs of the Carpathians. The entrance, which faces the north, and is exposed to the cold winds from the snowy part of the Carpathian range, is eighteen fathoms high and nine broad; and the cave spreads out laterally, and descends to a point fifty fathoms below the entrance, where it is twenty-six fathoms in breadth, and of irregular height. Beyond this no one had at that time penetrated, on account of the unsafe footing, although many distant echoes were returned by the farther recesses of the cave; indeed, to get even so far as this, much step-cutting was necessary.

When the external frost of winter comes on, the account proceeds, the effect in the cave is the same as if fires had been lighted there: the ice melts, and swarms of flies and bats and hares take refuge in the interior from the severity of the winter. As soon as spring arrives, the warmth of winter disappears from the interior, water exudes from the roof and is converted into ice, while the more abundant supplies which pour down on to the sandy floor are speedily frozen there. In the dog-days, the frost is so intense that a small icicle becomes in one day a huge mass of ice; but a cool day promptly brings a thaw, and the cave is looked upon as a barometer, not merely feeling, but also presaging, the changes of weather. The people of the neighborhood, when employed in field-work, arrange their labour so that the mid-day meal may be taken near the cave, when they either ice the water they have brought with them, or drink the melted ice, which they consider very good for the stomach. It had been calculated that six hundred weekly carts would not be sufficient to keep the cavern free from ice. The ground above the cave is peculiarly rich in grass.

In explanation of these phenomena, Bell threw out the following suggestions, which need no comment. The earth being of itself cold and damp, the external heat of the atmosphere, by partially penetrating into the ground, drives in this native cold to the inner parts of the earth, and makes the cold there more dense. On the other hand, when the external air is cold, it draws forth towards the surface the heat there may be in the inner part of the earth, and thus makes caverns warm. In support and illustration of this view, he states that in the hotter parts of Hungary, when the people wish to cool their wine, they dig a hole two feet deep, and place in it the flagon of wine, and, after filling up the hole again, light a blazing fire upon the surface, which cools the wine as if the flagon had been laid in ice. He also suggests that possibly the cold winds from the Carpathians bring with them imperceptible particles of snow, which reach the water of the cave, and convert it into ice. Further, the rocks of the Carpathians abound in salts, nitre, alum, etc., which may, perhaps, mingle with such snowy particles, and produce the ordinary effect of the snow and salt in the artificial production of ice.

The passage states that which of the following is true?

Possible Answers:

The cave is used for accommodation at times.

Hungarians drink warmed wine.

The ice taken from the cave is sold.

The deposits of minerals may affect the temperature of the cave. 

Snow solely converts the water in the cave to ice.

Correct answer:

The deposits of minerals may affect the temperature of the cave. 

Explanation:

The last line of the last paragraph states that “Further, the rocks of the Carpathians abound in salts, nitre, alum, etc., which may, perhaps, mingle with such snowy particles, and produce the ordinary effect of the snow and salt in the artificial production of ice.” This suggests that the mineral salts in the rocks have the effect of cooling the cave by mixing with snow.

Example Question #2 : Analyzing Sequence In Natural Science Passages

Adapted from Ice-Caves of France and Switzerland by George Forrest Browne (1865)

This account states that the cave is in the county of Thorn, among the lowest spurs of the Carpathians. The entrance, which faces the north, and is exposed to the cold winds from the snowy part of the Carpathian range, is eighteen fathoms high and nine broad; and the cave spreads out laterally, and descends to a point fifty fathoms below the entrance, where it is twenty-six fathoms in breadth, and of irregular height. Beyond this no one had at that time penetrated, on account of the unsafe footing, although many distant echoes were returned by the farther recesses of the cave; indeed, to get even so far as this, much step-cutting was necessary.

When the external frost of winter comes on, the account proceeds, the effect in the cave is the same as if fires had been lighted there: the ice melts, and swarms of flies and bats and hares take refuge in the interior from the severity of the winter. As soon as spring arrives, the warmth of winter disappears from the interior, water exudes from the roof and is converted into ice, while the more abundant supplies which pour down on to the sandy floor are speedily frozen there. In the dog-days, the frost is so intense that a small icicle becomes in one day a huge mass of ice; but a cool day promptly brings a thaw, and the cave is looked upon as a barometer, not merely feeling, but also presaging, the changes of weather. The people of the neighborhood, when employed in field-work, arrange their labour so that the mid-day meal may be taken near the cave, when they either ice the water they have brought with them, or drink the melted ice, which they consider very good for the stomach. It had been calculated that six hundred weekly carts would not be sufficient to keep the cavern free from ice. The ground above the cave is peculiarly rich in grass.

In explanation of these phenomena, Bell threw out the following suggestions, which need no comment. The earth being of itself cold and damp, the external heat of the atmosphere, by partially penetrating into the ground, drives in this native cold to the inner parts of the earth, and makes the cold there more dense. On the other hand, when the external air is cold, it draws forth towards the surface the heat there may be in the inner part of the earth, and thus makes caverns warm. In support and illustration of this view, he states that in the hotter parts of Hungary, when the people wish to cool their wine, they dig a hole two feet deep, and place in it the flagon of wine, and, after filling up the hole again, light a blazing fire upon the surface, which cools the wine as if the flagon had been laid in ice. He also suggests that possibly the cold winds from the Carpathians bring with them imperceptible particles of snow, which reach the water of the cave, and convert it into ice. Further, the rocks of the Carpathians abound in salts, nitre, alum, etc., which may, perhaps, mingle with such snowy particles, and produce the ordinary effect of the snow and salt in the artificial production of ice.

The second paragraph establishes all of the following EXCEPT __________.

Possible Answers:

the area above the cave is verdant

animals shelter in the cave in winter

icicles grow rapidly in high summer

the cave is warm when it is cold outside and vice versa

cutting steps into the cave was necessary

Correct answer:

cutting steps into the cave was necessary

Explanation:

The correct answer is established in the first, not the second, paragraph. The second paragraph states that the temperature in the cave is contrary to that outside it. It also states that animals take shelter in it in winter and that the ground above it is grassy, or “verdant.” In the latter half of the paragraph, the author states that in the “dog-days” or high summer, the icicles become huge masses of ice over a short time.

Example Question #1 : Recognizing Details Of Science Passages

Adapted from A Practical Treatise on the Hive and Honey-Bee by Lorenzo Lorraine Langstroth (1857 ed.)

Of all the numerous enemies of the honey-bee, the Bee-Moth (Tinea mellonella), in climates of hot summers, is by far the most to be dreaded. So widespread and fatal have been its ravages in this country that thousands have abandoned the cultivation of bees in despair, and in districts which once produced abundant supplies of the purest honey, bee-keeping has gradually dwindled down into a very insignificant pursuit. Contrivances almost without number have been devised to defend the bees against this invidious foe, but still it continues its desolating inroads, almost unchecked, laughing as it were to scorn at all the so-called "moth-proof" hives, and turning many of the ingenious fixtures designed to entrap or exclude it into actual aids and comforts in its nefarious designs.

I should feel but little confidence in being able to reinstate bee-keeping in our country into a certain and profitable pursuit if I could not show the apiarian in what way he can safely bid defiance to the pestiferous assaults of this, his most implacable enemy. I have patiently studied its habits for years, and I am at length able to announce a system of management founded upon the peculiar construction of my hives, which will enable the careful bee-keeper to protect his colonies against the monster. The bee-moth infects our apiaries, just as weeds take possession of a fertile soil. Before explaining the means upon which I rely to circumvent the moth, I will first give a brief description of its habits.

Swammerdam, towards the close of the seventeenth century, gave a very accurate description of this insect, which was then called by the very expressive name of the "bee-wolf." He has furnished good drawings of it, in all its changes, from the worm to the perfect moth, together with the peculiar webs or galleries that it constructs and from which the name of Tinea galleria or “gallery moth” has been given to it by some entomologists. He failed, however, to discriminate between the male and female, which, because they differ so much in size and appearance, he supposed to be two different species of the wax-moth. It seems to have been a great pest in his time, and even Virgil speaks of the "dirum tineæ genus," the dreadful offspring of the moth; that is the worm.

This destroyer usually makes its appearance about the hives in April or May, the time of its coming depending upon the warmth of the climate or the forwardness of the season. It is seldom seen on the wing (unless startled from its lurking place about the hive) until towards dark, and is evidently chiefly nocturnal in its habits. In dark cloudy days, however, I have noticed it on the wing long before sunset, and if several such days follow in succession, the female, oppressed with the urgent necessity of laying her eggs, may be seen endeavoring to gain admission to the hives. The female is much larger than the male, and "her color is deeper and more inclining to a darkish gray, with small spots or blackish streaks on the interior edge of her upper wings." The color of the male inclines more to a light gray; they might easily be mistaken for different species of moths. These insects are surprisingly agile, both on foot and on the wing. The motions of a bee are very slow in comparison. "They are," says Reaumur, "the most nimble-footed creatures that I know." "If the approach to the apiary be observed of a moonlight evening, the moths will be found flying or running round the hives, watching an opportunity to enter, whilst the bees that have to guard the entrances against their intrusion will be seen acting as vigilant sentinels, performing continual rounds near this important post, extending their antenna to the utmost, and moving them to the right and left alternately. Woe to the unfortunate moth that comes within their reach!" "It is curious," says Huber, "to observe how artfully the moth knows how to profit, to the disadvantage of the bees, which require much light for seeing objects; and the precautions taken by the latter in reconnoitering and expelling so dangerous an enemy."

The first paragraph establishes all of the following EXCEPT __________.

Possible Answers:

bee keeping has, in some areas, become a trifling hobby

the author has faith in the devices used to stop the bee-moth

the ravages of the bee-moth have dissuaded many from continuing bee keeping

in hot summers the bee-moth is the worst enemy of the honey bee

many contraptions have been invented to try to stop the bee-moth

Correct answer:

the author has faith in the devices used to stop the bee-moth

Explanation:

The author does not believe the devices created to stop the bee-moth work, as he states in the first paragraph, “Contrivances almost without number, have been devised, to defend the bees against this invidious foe, but still it continues its desolating inroads, almost unchecked, laughing as it were to scorn, at all the so-called 'moth-proof' hives, and turning many of the ingenious fixtures designed to entrap or exclude it, into actual aids and comforts in its nefarious designs.” So, instead of being kept out of the beehives or killed by the traps or preventative measures, the moth instead uses them to get to the hive.

Example Question #182 : Sat Critical Reading

Adapted from A Practical Treatise on the Hive and Honey-Bee by Lorenzo Lorraine Langstroth (1857 ed.)

Of all the numerous enemies of the honey-bee, the Bee-Moth (Tinea mellonella), in climates of hot summers, is by far the most to be dreaded. So widespread and fatal have been its ravages in this country that thousands have abandoned the cultivation of bees in despair, and in districts which once produced abundant supplies of the purest honey, bee-keeping has gradually dwindled down into a very insignificant pursuit. Contrivances almost without number have been devised to defend the bees against this invidious foe, but still it continues its desolating inroads, almost unchecked, laughing as it were to scorn at all the so-called "moth-proof" hives, and turning many of the ingenious fixtures designed to entrap or exclude it into actual aids and comforts in its nefarious designs.

I should feel but little confidence in being able to reinstate bee-keeping in our country into a certain and profitable pursuit if I could not show the apiarian in what way he can safely bid defiance to the pestiferous assaults of this, his most implacable enemy. I have patiently studied its habits for years, and I am at length able to announce a system of management founded upon the peculiar construction of my hives, which will enable the careful bee-keeper to protect his colonies against the monster. The bee-moth infects our apiaries, just as weeds take possession of a fertile soil. Before explaining the means upon which I rely to circumvent the moth, I will first give a brief description of its habits.

Swammerdam, towards the close of the seventeenth century, gave a very accurate description of this insect, which was then called by the very expressive name of the "bee-wolf." He has furnished good drawings of it, in all its changes, from the worm to the perfect moth, together with the peculiar webs or galleries that it constructs and from which the name of Tinea galleria or “gallery moth” has been given to it by some entomologists. He failed, however, to discriminate between the male and female, which, because they differ so much in size and appearance, he supposed to be two different species of the wax-moth. It seems to have been a great pest in his time, and even Virgil speaks of the "dirum tineæ genus," the dreadful offspring of the moth; that is the worm.

This destroyer usually makes its appearance about the hives in April or May, the time of its coming depending upon the warmth of the climate or the forwardness of the season. It is seldom seen on the wing (unless startled from its lurking place about the hive) until towards dark, and is evidently chiefly nocturnal in its habits. In dark cloudy days, however, I have noticed it on the wing long before sunset, and if several such days follow in succession, the female, oppressed with the urgent necessity of laying her eggs, may be seen endeavoring to gain admission to the hives. The female is much larger than the male, and "her color is deeper and more inclining to a darkish gray, with small spots or blackish streaks on the interior edge of her upper wings." The color of the male inclines more to a light gray; they might easily be mistaken for different species of moths. These insects are surprisingly agile, both on foot and on the wing. The motions of a bee are very slow in comparison. "They are," says Reaumur, "the most nimble-footed creatures that I know." "If the approach to the apiary be observed of a moonlight evening, the moths will be found flying or running round the hives, watching an opportunity to enter, whilst the bees that have to guard the entrances against their intrusion will be seen acting as vigilant sentinels, performing continual rounds near this important post, extending their antenna to the utmost, and moving them to the right and left alternately. Woe to the unfortunate moth that comes within their reach!" "It is curious," says Huber, "to observe how artfully the moth knows how to profit, to the disadvantage of the bees, which require much light for seeing objects; and the precautions taken by the latter in reconnoitering and expelling so dangerous an enemy."

One of the main points made in the last section of the last paragraph is __________.

Possible Answers:

it is not curious that bees defend against the bee-moth

Huber believes that the bee-moths would be more successful if they entered the hive during the day

the female bee-moth is a light gray in color

the author thinks that Huber is wrong in his assertions

a critic has stated that the bee-moth takes advantage of the bee’s inability to see at night

Correct answer:

a critic has stated that the bee-moth takes advantage of the bee’s inability to see at night

Explanation:

The end of the last paragraph tells us that Huber has said that the bee-moth and the bees are curious in their behavior, as the moths seem to know that the bee cannot see well at night and the bees are quite determined to expel the moths from their nests.

Example Question #13 : Identifying And Analyzing Main Ideas In Natural Science Passages

Adapted from An Introduction to Astronomy by Forest Ray Moulton (1916 ed.)

The ancient Greeks, at a period four or five hundred years preceding the common era, definitely undertook to find from systematic observation how celestial phenomena follow one another. They determined very accurately the number of days in the year, the period of the moon's revolution, and the paths of the sun and the moon among the stars; they correctly explained the cause of eclipses and learned how to predict them with a considerable degree of accuracy; they undertook to measure the distances to the heavenly bodies, and to work out a complete system that would represent their motions. The idea was current among the Greek philosophers that the earth was spherical, that it turned on its axis, and, among some of them, that it revolved around the sun. They had true science in the modern acceptance of the term, but it was largely confined to the relations among celestial phenomena.

The conception that the heavens are orderly, which they definitely formulated and acted on with remarkable success, has been extended, especially in the last two centuries, so as to include the whole universe. The extension was first made to the inanimate world and then to the more complicated phenomena associated with living beings. Every increase in carefully recorded experience has confirmed and strengthened the belief that nature is perfectly orderly, until now every one who has had an opportunity of becoming familiar with any science is firmly convinced of the truth of this principle, which is the basis of all science.

Which of the following best summarizes this passage’s remarks on Greek science?

Possible Answers:

Their mania for celestial phenomena advanced science to a great degree.

Their work was the basis for modern astronomy.

They did have a true science in one regard at least.

They were the only people to think the world was orderly.

None of the other answers

Correct answer:

They did have a true science in one regard at least.

Explanation:

Throughout this passage, the author lays out the case that the Greeks had at least one science, namely something like what we would call "astronomy." Although they did not have many other sciences—in the opinion of the author, at least—they had at least this one branch of science "in the modern acceptance of the term."

Example Question #212 : Isee Middle Level (Grades 7 8) Reading Comprehension

"Interpreting the Copernican Revolution" by Matthew Minerd (2014)

The expressions of one discipline can often alter the way that other subjects understand themselves. Among such cases are numbered the investigations of Nicolaus Copernicus. Copernicus is best known for his views concerning heliocentrism, a view which eventually obliterated many aspects of the ancient/medieval worldview, at least from the standpoint of physical science. It had always been the natural view of mankind that the earth stood at the center of the universe, a fixed point in reference to the rest of the visible bodies. The sun, stars, and planets all rotated around the earth.

With time, this viewpoint became one of the major reference points for modern life. It provided a provocative image that was used—and often abused—by many people for various purposes. For those who wished to weaken the control of religion on mankind, it was said that the heliocentric outlook proved man’s insignificance. In contrast with earlier geocentrism, heliocentrism was said to show that man is not the center of the universe. He is merely one small being in the midst of a large cosmos. However, others wished to use the “Copernican Revolution” in a very different manner. These thinkers wanted to show that there was another “recentering” that had to happen. Once upon a time, we talked about the world. Now, however, it was necessary to talk of man as the central reference point. Just as the solar system was “centered” on the sun, so too should the sciences be centered on the human person.

However, both of these approaches are fraught with problems. Those who wished to undermine the religious mindset rather misunderstood the former outlook on the solar system. The earlier geocentric mindset did not believe that the earth was the most important body in the heavens. Instead, many ancient and medieval thinkers believed that the highest “sphere” above the earth was the most important being in the physical universe. Likewise, the so-called “Copernican Revolution” in physics was different from the one applied to the human person. Copernicus’ revolution showed that the human point of view was not the center, whereas the later forms of “Copernican revolution” wished to show just the opposite.

Of course, there are many complexities in the history of such important changes in scientific outlook. Nevertheless, it is fascinating to see the wide-reaching effects of such discoveries, even when they have numerous, ambiguous effects.

Which of the following could classify the type of people described in the underlined sentence?

Possible Answers:

Hubristic

Humanitarian

Academic

Scientific

Humanistic

Correct answer:

Humanistic

Explanation:

The people mentioned in this sentence took a very different view from those who thought that the new science showed the "smallness" of the human person. They wanted to say, instead, that it was necessary to have another "recentering," placing the human person at the center of the sciences. Humanism is such a task—though, humanitarianism is not. The latter represents providing aid to help human beings (as in humanitarian action after a major natural disaster).

Example Question #1 : Drawing Generalizations About Natural Science Passages

Adapted from Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)

The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding. There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.

Some of the best known of these cases are found among those mammals and birds that inhabit countries more or less covered with snow during a part of the year. A good instance is afforded by the Irish or variable hare, which is chiefly found in Ireland and Scotland. In summer, this looks very much like an ordinary hare, though rather grayer in tint and smaller in size, but in winter it becomes white with the exception of the black tips to the ears. Investigations that have been made on the closely allied American hare seem to show that the phenomenon is due to the growth of new hairs of white hue. 

The common stoat is subject to similar color change in the northern parts of its range. In summer it is of a bright reddish brown color with the exception of the under parts, which are yellowish white, and the end of the tail, which is black. But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.

In which of the following would you most expect to find this passage reprinted?

Possible Answers:

A scholarly report about weasels

A how-to manual

A physics textbook

An article in a biology magazine

A cookbook

Correct answer:

An article in a biology magazine

Explanation:

Where would one most likely find this article reprinted? Well, we wouldn’t be likely to find it in “a how-to manual” as it doesn’t explain how to do anything; it conveys information about certain types of animals. Similarly, since it doesn’t discuss physics or have anything to do with cooking, we can ignore the answers “A physics textbook” and “A cookbook.” This leaves us with “A scholarly report about weasels” and “An article in a biology magazine.” At this point we have to consider how the weasel is discussed in the passage—it is discussed very little, only in the context of being compared to the stoat or providing an example of carnivorous animals that change their fur color, along with the stoat. Given that the weasel isn’t the main subject of the passage, “An article in a biology magazine” is the best answer choice.

Example Question #192 : Sat Critical Reading

Adapted from "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)

The theory that the brilliant colors of flowers and fruits is due to the direct action of light has been supported by a recent writer by examples taken from the arctic instead of from the tropical flora. In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days. “The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays. M. Grisebach says that during a journey in Norway he observed that the majority of deciduous trees had already, at the 60th degree of latitude, larger leaves than in Germany, while M. Ch. Martins has made a similar observation as regards the leguminous plants cultivated in Lapland.” The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense. The flowers also are similarly changed: those which are white or yellow in central Europe becoming red or orange in Norway. This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight. In the one the light is more persistent, in the other more intense because it traverses a less thickness of atmosphere.

Admitting the facts as above stated to be in themselves correct, they do not by any means establish the theory founded on them; and it is curious that Grisebach, who has been quoted by this writer for the fact of the increased size of the foliage, gives a totally different explanation of the more vivid colors of Arctic flowers. He says, “We see flowers become larger and more richly colored in proportion as, by the increasing length of winter, insects become rarer, and their cooperation in the act of fecundation is exposed to more uncertain chances.” (Vegetation du Globe, col. i. p. 61—French translation.) This is the theory here adopted to explain the colors of Alpine plants, and we believe there are many facts that will show it to be the preferable one. The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south.

In this passage, the author __________.

Possible Answers:

disagrees with Hooker but agrees with Martins

disagrees with Martins but agrees with Grisebach

agrees with all of the writers and scientists mentioned in the passage

disagrees with all of the writers and scientists mentioned in the passage

disagrees with the "recent writer" quoted in the first paragraph, but agrees with Grisebach

Correct answer:

disagrees with the "recent writer" quoted in the first paragraph, but agrees with Grisebach

Explanation:

Answering this question requires you to read closely, as many theories are mentioned throughout the passage and keeping track of them can be quite challenging. In the first paragraph, the writer quotes a "recent writer," who then quotes evidence in the form of observations by M. Grisebach and M. Ch. Martins. In the second paragraph, the writer says that he agrees with the evidence of the "recent writer" (in other words, Grisebach and Martins), but not with the theory the "recent writer" has come up with to explain that evidence. So, the author disagrees with the "recent writer," but agrees with Grisebach, because the author goes on to quote Grisebach's own theory, with which the author agrees.

Example Question #1 : Comparing And Contrasting In Science Passages

"Abstraction in the Sciences" by Matthew Minerd (2014)

Thinking “abstractly” is not a term that means quite the same thing in all of the sciences. Although we rarely think about this, it plays a key role in almost all of our day-to-day thought. Consider a zoologist working in a lab with many animals. When she is studying any individual tiger, she is not completely worried about the particular tiger—at least not primarily. Instead, she is trying to figure out certain characteristics of tigers in general. By meticulous testing, the zoologist carefully works out the physiology of tigers and considers what are absolutely necessary elements of their physical makeup. Even when she places a tiger in different habitats, her sight is aimed at the general condition of tigers and their needs in general.

However, things become even stranger when you start to consider how we think about mathematical objects. Consider the case of geometric figures. A triangle appears to be rather simple for most of us to think about. You can draw a triangle on a piece of paper, each side having a certain thickness and length. However when you think about this in geometry class, the triangle’s edges have no real thickness. Neither a point nor a line has a thickness for the mathematician. Such a thickness only exists on our paper, which represents the point or line. Consider also a line drawn on a piece of graph paper. Technically, there are an infinite number of points in the line. Indeed, even between 4.5 and 4.6, there are an infinite number of numbers—for example 4.55 is between them, then 4.555 between 4.55 and 4.6, and 4.5555 between 4.555 and 4.6, et cetera. In all of these cases, the mathematical reality takes on a very peculiar character when you consider it in the abstract. However, the concrete triangle remains very tangible and ordinary. Likewise, 4.6 and 4.5 inches still have 0.1 inches between them. Nevertheless, in the abstract, mathematical realities are quite strange, even stranger then the idea of “a tiger in general.”

What are the two things being contrasted in the first paragraph?

Possible Answers:

Captive tigers and wild tigers

None of the other answers

Captive tigers in general and scientifically tested captive tigers

Individual tigers and the general properties of tigers

Living tigers and ancient tigers

Correct answer:

Individual tigers and the general properties of tigers

Explanation:

The first paragraph is focusing on the strange way that a scientist can consider "tigers in general." She is not so much concerned with any particular tiger as much as she is with the general "makeup" of tigers. These two ways of looking at the matter are the most directly contrasted point in this paragraph.

Example Question #1 : Textual Relationships In Science Passages

Adapted from An Introduction to Astronomy by Forest Ray Moulton (1916 ed.)

The ancient Greeks, at a period four or five hundred years preceding the common era, definitely undertook to find from systematic observation how celestial phenomena follow one another. They determined very accurately the number of days in the year, the period of the moon's revolution, and the paths of the sun and the moon among the stars; they correctly explained the cause of eclipses and learned how to predict them with a considerable degree of accuracy; they undertook to measure the distances to the heavenly bodies, and to work out a complete system that would represent their motions. The idea was current among the Greek philosophers that the earth was spherical, that it turned on its axis, and, among some of them, that it revolved around the sun. They had true science in the modern acceptance of the term, but it was largely confined to the relations among celestial phenomena.

The conception that the heavens are orderly, which they definitely formulated and acted on with remarkable success, has been extended, especially in the last two centuries, so as to include the whole universe. The extension was first made to the inanimate world and then to the more complicated phenomena associated with living beings. Every increase in carefully recorded experience has confirmed and strengthened the belief that nature is perfectly orderly, until now every one who has had an opportunity of becoming familiar with any science is firmly convinced of the truth of this principle, which is the basis of all science.

Which best describes the contrast between modern and ancient science?

Possible Answers:

None of the other answers

While modern science has many branches, ancient science had a more limited number of subjects that it studied.

While ancient science investigated visible bodies, contemporary science is concerned with many realities that would have been invisible in past ages.

The two have very little in common at all.

While ancient science focused mainly on the heavens, contemporary science is much more biological.

Correct answer:

While modern science has many branches, ancient science had a more limited number of subjects that it studied.

Explanation:

This selection does not do much to contrast the two sciences, as it is focusing on the character of Greek science in general, particularly its concern with celestial bodies and their motions. However, at the end of the first paragraph, there is a helpful sentence: "They had true science in the modern acceptance of the term, but it was largely confined to the relations among celestial phenomena." This implies that they had only one "real" branch of science, namely that which was "confined to the relations among celestial phenomena." The implication is that in contrast with this single science, modernity has a number of different sciences.

Learning Tools by Varsity Tutors