Precalculus : Understand features of hyperbolas and ellipses

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #121 : Hyperbolas And Ellipses

Determine the length of the foci for the following hyperbola equation:

Possible Answers:

Correct answer:

Explanation:

To solve, simply use the follow equation where c is the length of the foci.

In this particular case,

Thus,

Example Question #122 : Hyperbolas And Ellipses

Find the foci of the hyperbola with the following equation:

Possible Answers:

 and 

 and 

 and 

 and 

 and 

Correct answer:

 and 

Explanation:

The standard form of the equation for a hyperbola is given by

The foci are located at (h+c, k) and (h-c, k), where c is found by using the formula

Since our equation is already in standard form, you can see that

Plugging into the formula

So the foci are found at

 AND

 

 

Example Question #1791 : Pre Calculus

How can this graph be changed to be the graph of

?

Wrong hyperbola 1

Possible Answers:

The -intercepts should be at the points and .

The center box should extend up to  and down to , stretching the graph.

The graph should have -intercepts and not -intercepts.

The graph should be an ellipse and not a hyperbola.

The -intercepts should be at the points and .

Correct answer:

The -intercepts should be at the points and .

Explanation:

This equation should be thought of as .

This means that the hyperbola will be determined by a box with x-intercepts at and y-intercepts at .

The hyperbola was incorrectly drawn with the intercepts at instead.

Example Question #121 : Hyperbolas And Ellipses

Which of the following would NOT be true of the graph for ?

Possible Answers:

The graph is centered at .

The graph never intersects with the -axis.

The graph opens up and down.

All of these statements are true.

The graph never intersects with the -axis.

Correct answer:

The graph never intersects with the -axis.

Explanation:

The graph should look like this:

Right hyperbola 2

Example Question #124 : Hyperbolas And Ellipses

Which of these equations produce this graph, rotated 90 degrees?

Wrong hyperbola 1

Possible Answers:

Correct answer:

Explanation:

Rotated 90 degrees, this graph would be opening up and down instead of left and right, so the equation will have the y term minus the x term.

The box that the hyperbola is drawn around will also rotate. It will now be up/down 2 and left/right 3.

This makes the correct equation

.

Example Question #125 : Hyperbolas And Ellipses

What is the equation of the conic section graphed below?Right hyperbola 1

Possible Answers:

Correct answer:

Explanation:

The hyperbola pictured is centered at , meaning that the equation has a horizontal shift. The equation must have rather than just x. The hyperbola opens up and down, so the equation must be the y term minus the x term. The hyperbola is drawn according to the box going up/down 5 and left/right 2, so the y term must be or , and the x term must be  or .

Example Question #122 : Hyperbolas And Ellipses

The equation of an ellipse, , is . Which of the following is the correct eccentricity of this ellipse?

Possible Answers:

Correct answer:

Explanation:

The equation for the eccentricity of an ellipse is , where  is eccentricity,  is the distance from the foci to the center, and  is the square root of the larger of our two denominators.

Our denominators are  and , so .

To find , we must use the equation , where  is the square root of the smaller of our two denominators.

This gives us , so .

Therefore, we can see that

 .

Learning Tools by Varsity Tutors