Precalculus : Pre-Calculus

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Law Of Cosines And Sines

Find the length of the missing side, \(\displaystyle d\).

3

Possible Answers:

\(\displaystyle 20.57\)

\(\displaystyle 29.12\)

\(\displaystyle 28.54\)

\(\displaystyle 25.53\)

Correct answer:

\(\displaystyle 25.53\)

Explanation:

First, use the Law of Sines to find the measurement of angle \(\displaystyle B.\)

\(\displaystyle \frac{12}{\sin 21}=\frac{16}{\sin B}\)

\(\displaystyle 12\sin B = 5.73\)

\(\displaystyle \sin B=0.48\)

\(\displaystyle B= 28.69\)

Recall that all the angles in a triangle need to add up to \(\displaystyle 180\) degrees.

\(\displaystyle 21+28.69+A=180\)

\(\displaystyle A=130.31\)

Now, use the Law of Sines again to find the length of \(\displaystyle d\).

\(\displaystyle \frac{d}{\sin 130.31}=\frac{12}{\sin 21}\)

\(\displaystyle d \sin 21= 9.15\)

\(\displaystyle d=25.53\)

 

Example Question #61 : Trigonometric Applications

Find the length of the missing side, \(\displaystyle d\).

1

Possible Answers:

\(\displaystyle 10.73\)

\(\displaystyle 9.89\)

\(\displaystyle 8.14\)

\(\displaystyle 12.44\)

Correct answer:

\(\displaystyle 10.73\)

Explanation:

First, use the Law of Sines to find the measurement of angle \(\displaystyle B.\)

\(\displaystyle \frac{6}{\sin34}=\frac{9}{\sin B}\)

\(\displaystyle 6 \sin B = 5.03\)

\(\displaystyle \sin B=0.84\)

\(\displaystyle B= 57.14\)

Recall that all the angles in a triangle need to add up to \(\displaystyle 180\) degrees.

\(\displaystyle 34+57.14+A=180\)

\(\displaystyle A=88.86\)

Now, use the Law of Sines again to find the length of \(\displaystyle d\).

\(\displaystyle \frac{d}{\sin 88.86}=\frac{6}{\sin 34}\)

\(\displaystyle d \sin 34=5.9988\)

\(\displaystyle d=10.73\)

 

Example Question #21 : Use The Laws Of Cosines And Sines

Find the length of the missing side, \(\displaystyle d.\)

7

Possible Answers:

\(\displaystyle 13.98\)

\(\displaystyle 12.37\)

\(\displaystyle 14.63\)

\(\displaystyle 15.12\)

Correct answer:

\(\displaystyle 14.63\)

Explanation:

First, use the Law of Sines to find the measurement of angle \(\displaystyle B.\)

\(\displaystyle \frac{13}{\sin 54}=\frac{14}{\sin B}\)

\(\displaystyle 13\sin B = 11.33\)

\(\displaystyle \sin B=0.87\)

\(\displaystyle B= 60.46\)

Recall that all the angles in a triangle need to add up to \(\displaystyle 180\) degrees.

\(\displaystyle 54+60.46+C=180\)

\(\displaystyle C=65.54\)

Now, use the Law of Sines again to find the length of \(\displaystyle d\).

\(\displaystyle \frac{d}{\sin 65.54}=\frac{13}{\sin 54}\)

\(\displaystyle d \sin 54= 11.83\)

\(\displaystyle d=14.63\)

 

Example Question #22 : Use The Laws Of Cosines And Sines

Find the length of the missing side, \(\displaystyle d.\)

8

Possible Answers:

\(\displaystyle 8.95\)

\(\displaystyle 9.51\)

\(\displaystyle 8.81\)

\(\displaystyle 7.84\)

Correct answer:

\(\displaystyle 8.95\)

Explanation:

First, use the Law of Sines to find the measurement of angle \(\displaystyle B.\)

\(\displaystyle \frac{6}{\sin 41}=\frac{8}{\sin B}\)

\(\displaystyle 6\sin B = 5.25\)

\(\displaystyle \sin B=0.875\)

\(\displaystyle B= 61.04\)

Recall that all the angles in a triangle need to add up to \(\displaystyle 180\) degrees.

\(\displaystyle 41+61.04+C=180\)

\(\displaystyle C=77.96\)

Now, use the Law of Sines again to find the length of \(\displaystyle d\).

\(\displaystyle \frac{d}{\sin 77.96}=\frac{6}{\sin 41}\)

\(\displaystyle d \sin 41= 5.87\)

\(\displaystyle d=8.95\)

 

Example Question #25 : Law Of Cosines And Sines

Find the length of the missing side, \(\displaystyle d\).

9

Possible Answers:

\(\displaystyle 15.62\)

\(\displaystyle 19.35\)

\(\displaystyle 14.12\)

\(\displaystyle 11.71\)

Correct answer:

\(\displaystyle 15.62\)

Explanation:

First, use the Law of Sines to find the measurement of angle \(\displaystyle B.\)

\(\displaystyle \frac{9}{\sin 35}=\frac{12}{\sin B}\)

\(\displaystyle 9\sin B = 6.88\)

\(\displaystyle \sin B=0.76\)

\(\displaystyle B= 49.46\)

Recall that all the angles in a triangle need to add up to \(\displaystyle 180\) degrees.

\(\displaystyle 35+49.46+C=180\)

\(\displaystyle C=95.54\)

Now, use the Law of Sines again to find the length of \(\displaystyle d\).

\(\displaystyle \frac{d}{\sin 95.54}=\frac{9}{\sin 35}\)

\(\displaystyle d \sin 35= 8.96\)

\(\displaystyle d=15.62\)

 

Example Question #23 : Use The Laws Of Cosines And Sines

Find the length of the missing side, \(\displaystyle d\).

4

Possible Answers:

\(\displaystyle 20.18\)

\(\displaystyle 24.71\)

\(\displaystyle 27.98\)

\(\displaystyle 28.91\)

Correct answer:

\(\displaystyle 27.98\)

Explanation:

First, use the Law of Sines to find the measurement of angle \(\displaystyle C.\)

\(\displaystyle \frac{17}{\sin 33}=\frac{16}{\sin C}\)

\(\displaystyle 17\sin C = 8.71\)

\(\displaystyle \sin C= 0.51\)

\(\displaystyle C= 30.66\)

Recall that all the angles in a triangle need to add up to \(\displaystyle 180\) degrees.

\(\displaystyle 33+30.66+B=180\)

\(\displaystyle B=116.34\)

Now, use the Law of Sines again to find the length of \(\displaystyle d\).

\(\displaystyle \frac{d}{\sin 116.34}=\frac{17}{\sin 33}\)

\(\displaystyle d \sin 33= 15.24\)

\(\displaystyle d=27.98\)

 

Example Question #27 : Law Of Cosines And Sines

Find the length of the missing side, \(\displaystyle d.\)

5

Possible Answers:

\(\displaystyle 35.91\)

\(\displaystyle 24.12\)

\(\displaystyle 31.50\)

\(\displaystyle 29.07\)

Correct answer:

\(\displaystyle 31.50\)

Explanation:

First, use the Law of Sines to find the measurement of angle \(\displaystyle C.\)

\(\displaystyle \frac{19}{\sin 37}=\frac{24}{\sin C}\)

\(\displaystyle 19\sin C = 14.44\)

\(\displaystyle \sin C= 0.76\)

\(\displaystyle C= 49.46\)

Recall that all the angles in a triangle need to add up to \(\displaystyle 180\) degrees.

\(\displaystyle 37+49.46+B=180\)

\(\displaystyle B=93.54\)

Now, use the Law of Sines again to find the length of \(\displaystyle d\).

\(\displaystyle \frac{d}{\sin 93.54}=\frac{19}{\sin 37}\)

\(\displaystyle d \sin 37 = 18.96\)

\(\displaystyle d=31.50\)

 

Example Question #21 : Use The Laws Of Cosines And Sines

Find the length of the missing side, \(\displaystyle d\).

6

Possible Answers:

\(\displaystyle 9.92\)

\(\displaystyle 9.28\)

\(\displaystyle 10.25\)

\(\displaystyle 7.64\)

Correct answer:

\(\displaystyle 10.25\)

Explanation:

First, use the Law of Sines to find the measurement of angle \(\displaystyle C.\)

\(\displaystyle \frac{7}{\sin 29}=\frac{4}{\sin C}\)

\(\displaystyle 7\sin C = 1.94\)

\(\displaystyle \sin C= 0.28\)

\(\displaystyle C= 16.26\)

Recall that all the angles in a triangle need to add up to \(\displaystyle 180\) degrees.

\(\displaystyle 16.26+29+B=180\)

\(\displaystyle B=134.74\)

Now, use the Law of Sines again to find the length of \(\displaystyle d\).

\(\displaystyle \frac{d}{\sin 134.74}=\frac{7}{\sin 29}\)

\(\displaystyle d \sin 29= 4.97\)

\(\displaystyle d=10.25\)

 

Example Question #29 : Law Of Cosines And Sines

Find the length of the missing side, \(\displaystyle d.\)

10

Possible Answers:

\(\displaystyle 17.14\)

\(\displaystyle 16.29\)

\(\displaystyle 17.80\)

\(\displaystyle 18.19\)

Correct answer:

\(\displaystyle 17.14\)

Explanation:

First, use the Law of Sines to find the measurement of angle \(\displaystyle B.\)

\(\displaystyle \frac{19}{\sin 61}=\frac{20}{\sin B}\)

\(\displaystyle 19\sin B = 17.49\)

\(\displaystyle \sin B=0.92\)

\(\displaystyle B= 66.93\)

Recall that all the angles in a triangle need to add up to \(\displaystyle 180\) degrees.

\(\displaystyle 61+66.93+C=180\)

\(\displaystyle C=52.07\)

Now, use the Law of Sines again to find the length of \(\displaystyle d\).

\(\displaystyle \frac{d}{\sin 52.07}=\frac{19}{\sin 61}\)

\(\displaystyle d \sin 61= 14.99\)

\(\displaystyle d=17.14\)

 

Example Question #30 : Law Of Cosines And Sines

Find the length of the missing side, \(\displaystyle d\).

12

Possible Answers:

\(\displaystyle 11.13\)

\(\displaystyle 13.22\)

\(\displaystyle 14.13\)

\(\displaystyle 15.92\)

Correct answer:

\(\displaystyle 14.13\)

Explanation:

First, use the Law of Sines to find the measurement of angle \(\displaystyle B.\)

\(\displaystyle \frac{13}{\sin 64}=\frac{9}{\sin C}\)

\(\displaystyle 13\sin C = 8.09\)

\(\displaystyle \sin C=0.62\)

\(\displaystyle C= 38.32\)

Recall that all the angles in a triangle need to add up to \(\displaystyle 180\) degrees.

\(\displaystyle 64+38.32+B=180\)

\(\displaystyle B=77.68\)

Now, use the Law of Sines again to find the length of \(\displaystyle d\).

\(\displaystyle \frac{d}{\sin 77.68}=\frac{13}{\sin 64}\)

\(\displaystyle d \sin 64= 12.70\)

\(\displaystyle d=14.13\)

 

Learning Tools by Varsity Tutors