Precalculus : Find a Point of Discontinuity

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Find A Point Of Discontinuity

What are the holes or vertical asymptotes, if any, for the function:  \displaystyle y=\frac{x^2-1}{x-1}

Possible Answers:

Correct answer:

Explanation:

Factorize the numerator for the function: 

\displaystyle y=\frac{x^2-1}{x-1}

\displaystyle y=\frac{(x+1)(x-1)}{x-1} = x+1

The removable discontinuity is \displaystyle x-1 since this is a term that can be eliminated from the function.  There are no vertical asymptotes.

Set the removable discontinutity to zero and solve for the location of the hole.

 \displaystyle x-1=0

\displaystyle x=1

The hole is located at:  \displaystyle x=1

Example Question #2 : Find A Point Of Discontinuity

For the following function, \displaystyle y=\frac{x^2-6x+9}{x^2-9}  , find all discontinuities, if possible.   

Possible Answers:

Correct answer:

Explanation:

Rewrite the function \displaystyle y=\frac{x^2-6x+9}{x^2-9} in its factored form.

\displaystyle y=\frac{x^2-6x+9}{x^2-9}=\frac{(x-3)(x-3)}{(x+3)(x-3)}

Since the \displaystyle x-3 term can be cancelled, there is a removable discontinuity, or a hole, at \displaystyle x=3.

The remaining denominator of \displaystyle x+3 indicates a vertical asymptote at \displaystyle x=-3.

 

Example Question #1 : Find A Point Of Discontinuity

If possible, find the type of discontinuity, if any:  

\displaystyle y= \frac{6x-9}{2x-3}

Possible Answers:

Correct answer:

Explanation:

By looking at the denominator of \displaystyle y= \frac{6x-9}{2x-3}, there will be a discontinuity.

Since the denominator cannot be zero, set the denominator not equal to zero and solve the value of \displaystyle x.

\displaystyle 2x-3\neq 0

\displaystyle 2x\neq 3

\displaystyle x\neq\frac{3}{2}

There is a discontinuity at \displaystyle x=\frac{3}{2}.

To determine what type of discontinuity, check if there is a common factor in the numerator and denominator of \displaystyle y= \frac{6x-9}{2x-3}.

Since the common factor is existent, reduce the function.

\displaystyle y= \frac{6x-9}{2x-3}=\frac{(3)(2x-3)}{2x-3}=3

Since the \displaystyle 2x-3 term can be cancelled, there is a removable discontinuity, or a hole, at \displaystyle x=\frac{3}{2}.

Example Question #2 : Find A Point Of Discontinuity

Find the point of discontinuity for the following function:

\displaystyle m(x)=\frac{x^2+4x-5}{x^2+7x+10}

Possible Answers:

\displaystyle (0, 4)

There is no point of discontinuity for the function.

\displaystyle (-5, 2)

\displaystyle (5, 1)

Correct answer:

\displaystyle (-5, 2)

Explanation:

Start by factoring the numerator and denominator of the function.

\displaystyle m(x)=\frac{x^2+4x-5}{x^2+7x+10}=\frac{(x+5)(x-1)}{(x+5)(x+2)}=\frac{x-1}{x+2}

A point of discontinuity occurs when a number \displaystyle a is both a zero of the numerator and denominator.

Since \displaystyle x=-5 is a zero for both the numerator and denominator, there is a point of discontinuity there. To find the \displaystyle y value, plug in \displaystyle -5 into the final simplified equation.

\displaystyle \frac{-5-1}{-5+2}=2

\displaystyle (-5, 2) is the point of discontinuity.

 

Example Question #1 : Find A Point Of Discontinuity

Find the point of discontinuity for the following function:

\displaystyle p(x)=\frac{x^3-4x^2-5x}{x^2-9x+20}

Possible Answers:

There is no point fo discontinuity for this function.

\displaystyle (-1, 0)

\displaystyle (2, -3)

\displaystyle (5, 30)

Correct answer:

\displaystyle (5, 30)

Explanation:

Start by factoring the numerator and denominator of the function.

\displaystyle p(x)=\frac{x^3-4x^2-5x}{x^2-9x+20}=\frac{x(x^2-4x-5)}{(x-5)(x-4)}=\frac{x(x-5)(x+1)}{(x-5)(x-4)}=\frac{x(x+1)}{x-4}

A point of discontinuity occurs when a number \displaystyle a is both a zero of the numerator and denominator.

Since \displaystyle x=5 is a zero for both the numerator and denominator, there is a point of discontinuity there. To find the \displaystyle y value, plug in \displaystyle 5 into the final simplified equation.

\displaystyle \frac{5(5+1)}{5-4}=30

\displaystyle (5, 30) is the point of discontinuity.

 

Example Question #1 : Find A Point Of Discontinuity

Find a point of discontinuity for the following function:

\displaystyle r(x)=\frac{16-4x^2}{x^2-4}

Possible Answers:

\displaystyle (-4, -2)

\displaystyle (-2, -4)

There are no discontinuities for this function.

\displaystyle (2, 4)

Correct answer:

\displaystyle (-2, -4)

Explanation:

Start by factoring the numerator and denominator of the function.

\displaystyle r(x)=\frac{16-4x^2}{x^2-4}=\frac{-4(x^2-4)}{(x+2)(x-2)}=\frac{-4(x-2)(x+2)}{(x-2)(x+2)}=-4

A point of discontinuity occurs when a number \displaystyle a is both a zero of the numerator and denominator.

Since \displaystyle x=\pm2 is a zero for both the numerator and denominator, there is a point of discontinuity there. Since the final function is \displaystyle r(x)=-4\displaystyle (2, -4) and \displaystyle (-2, -4) are points of discontinuity.

Example Question #1 : Find A Point Of Discontinuity

Find a point of discontinuity for the following function:

\displaystyle s(x)=\frac{180-5x^2}{x^2-36}

Possible Answers:

\displaystyle (-5, -6)

\displaystyle (-6, -5)

\displaystyle (6, 5)

There are no points of discontinuity for this function.

Correct answer:

\displaystyle (-6, -5)

Explanation:

Start by factoring the numerator and denominator of the function.

\displaystyle s(x)=\frac{180-5x^2}{x^2-36}=\frac{-5(x^2-36)}{(x-6)(x+6)}=\frac{-5(x-6)(x+6)}{(x-6)(x+6)}

A point of discontinuity occurs when a number \displaystyle a is both a zero of the numerator and denominator.

Since \displaystyle x=\pm 6 is a zero for both the numerator and denominator, there is a point of discontinuity there. Since the final function is \displaystyle s(x)=-5\displaystyle (6, -5) and \displaystyle (-6, -5) are points of discontinuity.

Example Question #8 : Find A Point Of Discontinuity

Find a point of discontinuity in the following function:

\displaystyle f(x)=\frac{x^2+x-12}{x^2+2x-8}

Possible Answers:

There is no point of discontinuity for this function.

\displaystyle (0, 4)

\displaystyle \left(-2, \frac{5}{7}\right)

\displaystyle \left(-4, \frac{7}{6}\right)

Correct answer:

\displaystyle \left(-4, \frac{7}{6}\right)

Explanation:

Start by factoring the numerator and denominator of the function.

\displaystyle f(x)=\frac{x^2+x-12}{x^2+2x-8}=\frac{(x+4)(x-3)}{(x+4)(x-2)}=\frac{(x-3)}{(x-2)}

A point of discontinuity occurs when a number \displaystyle a is both a zero of the numerator and denominator.

Since \displaystyle x=-4 is a zero for both the numerator and denominator, there is a point of discontinuity there. To find the \displaystyle y value, plug in \displaystyle -4 into the final simplified equation.

\displaystyle \frac{-4-3}{-4-2}=\frac{7}{6}

\displaystyle \left(-4, \frac{7}{6}\right) is the point of discontinuity.

 

Example Question #9 : Find A Point Of Discontinuity

Find the point of discontinuity for the following function:

\displaystyle g(x)=\frac{x^2-1}{x^2+8x+7}

Possible Answers:

\displaystyle \left(1, \frac{1}{3}\right)

There is no point of discontinuity.

\displaystyle \left(-1, -\frac{1}{3}\right)

\displaystyle (2, 4)

Correct answer:

\displaystyle \left(-1, -\frac{1}{3}\right)

Explanation:

Start by factoring the numerator and denominator of the function.

\displaystyle g(x)=\frac{x^2-1}{x^2+8x+7}=\frac{(x-1)(x+1)}{(x+1)(x+7)}=\frac{x-1}{x+7}

A point of discontinuity occurs when a number \displaystyle a is both a zero of the numerator and denominator.

Since \displaystyle x=-1 is a zero for both the numerator and denominator, there is a point of discontinuity there. To find the \displaystyle y value, plug in \displaystyle -1 into the final simplified equation.

\displaystyle \frac{-1-1}{-1+7}=-\frac{1}{3}

\displaystyle \left(-1, -\frac{1}{3}\right) is the point of discontinuity.

 

Example Question #1 : Find A Point Of Discontinuity

Find the point of discontinuity for the following function:

\displaystyle h(x)=\frac{x^2-5x+6}{x^2-9}

Possible Answers:

There is no point of discontinuity for this function.

\displaystyle \left(6, -\frac{2}{3}\right)

\displaystyle \left(5, \frac{1}{8}\right)

\displaystyle \left(3, \frac{1}{6}\right)

Correct answer:

\displaystyle \left(3, \frac{1}{6}\right)

Explanation:

Start by factoring the numerator and denominator of the function.

\displaystyle h(x)=\frac{x^2-5x+6}{x^2-9}=\frac{(x-2)(x-3)}{(x-3)(x+3)}=\frac{x-2}{x+3}

A point of discontinuity occurs when a number \displaystyle a is both a zero of the numerator and denominator.

Since \displaystyle x=3 is a zero for both the numerator and denominator, there is a point of discontinuity there. To find the \displaystyle y value, plug in \displaystyle 3 into the final simplified equation.

\displaystyle \frac{3-2}{3+3}=\frac{1}{6}

\displaystyle \left(3, \frac{1}{6}\right) is the point of discontinuity.

 

Learning Tools by Varsity Tutors